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Abstract In this paper, we develop a neuromechanical model of pumping in a valve-
less, tubular heart inspired by the tunicate,Ciona savignyi. Valveless, tubular hearts are
common throughout the animal kingdom. The vertebrate embryonic heart first forms
as a valveless, tubular pump. The embryonic, juvenile, and adult hearts of many inver-
tebrates are also valveless, tubular pumps. Several different pumpingmechanisms have
been propsed for tubular hearts, and it is not clear if all animals employ the samemecha-
nism.We compare the flows generated by this pumpingmechanisms to those produced
by peristalsis using a prescribed contraction wave and to those produced by impedance
pumping across a parameter space relevant to Ciona savignyi. The immersed bound-
ary method is used to solve the fully-coupled fluid-structure interaction problem of an
elastic tubular heart immersed in a viscous fluid. The FitzHugh–Nagumo equations
are used to model the propagation of the action potential which initiates the contrac-
tion. We find that for the scales relevant to Ciona, both the neuromechanical pumping
mechanism and peristalsis produce the strong flows observed in the tunicate heart.
Only the neuromechanical model produces flow patterns with all of the characteristics
reported for valveless, tubular hearts. Namely, the neuromechanical pump generates
a bidirectional wave of contraction and peristalsis does not.
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1 Introduction

Valveless, tubular hearts that drive fluid flow within or through enclosed spaces are
widespread in the animal kingdom (reviewed by Xavier-Neto et al. [31]). Among
other functions, these pumps are important for driving flow within circulatory and/or
respiratory systems (e.g. [7,18,21,22,26]).

Both impedance pumping and peristalsis have been proposed as mechanisms by
which tubular hearts drive flow [6,17,30]; this question is unresolved [17]. Impedance
pumping occurs when a single point of contraction produces passive, elastic waves
that propagate bidirectionally along an elastic section of tube with rigid ends. This
mechanism is characterized by a non-linear relationship between pumping frequency
and volumetric flow rate [15,16]. Peak flow velocities may also exceed the speed
of the contraction wave. Forouhar et al. [6] found these characteristics of flow pro-
duced by the vertebrate embryonic heart at the tubular stage, leading them to conclude
that impedance pumping was at work within these hearts. Another characteristic of
impedance pumps is that the flow direction is not determined by a morphological fea-
ture (e.g. one-way valve), but by the orientation of the compression site relative to the
rigid section of tube, the rigidity of the elastic section, and the pumping frequency.
Note that such flow reversals were not observed in their study.

Prior to Forouhar’s paper, the contractions of tubular hearts were described as
peristaltic. Peristalsis is defined as a wave of active contraction that propagates down
the length of a tube. Flow direction is determined by the direction of the propagating
wave. Peristalsis is traditionally modeled using a prescribed wave of contraction that
removes coupling between the fluid and the elastic structure. Using this approach,
passive, elastic waves are not observed or incorporated. Flow speeds produced by
peristalsis typically yield a linear relationship with pumping frequency as long as the
wave speed changes proportionally with the frequency [6,17]. Recent work has shown
that a non-linear relationship can be obtained by decoupling pumping frequency from
the speed of the contraction wave [30]. Peak flow speeds may also exceed the wave
speed if the contraction amplitude is sufficiently large so as to nearly occlude the tube
[25]. Bymodeling peristalsis using a prescribed unidirectional contractionwave, some
of the phenomena observed in actual hearts, such as a bidirectional contraction wave,
are not captured.

When exploring various pumping mechanisms, it is important to consider the scale
relevant to the problem. Tubular hearts and other tubular pumps drive fluid over a large
range of tube diameters (L) and pumping frequencies (ω), and the combination of these
variables matters substantially to subsequent fluid flow produced. A dimensionless
number that describes the relative importance of unsteady effects is the Womersley
number (Wo),

Wo = L

√
ω

ν
(1)
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Neuromechanical pumping

where ν is the kinematic viscosity of the fluid being driven. For Wo >> 1, viscous
effects are negligible. For Wo < 1, viscosity dampens out the inertia of pulsatile
pumping mechanisms, reducing their efficacy. In the case of pumping in elastic tubes,
the relative effect of viscosity (which is proportional to the Wo) and the stiffness
of the heart wall determine whether or not passive elastic waves will emanate from
the actuation point. If viscous effects are large relative to the stiffness, the system is
overly damped. Baird et al. [2] observed that little to no net flow was generated by
impedance pumping for the stiffnesses considered for Wo ≈ 1, a case in which the
system was overly damped with no passive, elastic waves of contraction. This result
was also predicted by an analytical model described by Bringley et al. [3].When active
traveling waves are prescribed for peristalsis, significant flow was generated for Wo
well below 1 [2,29,30].

Since tubular hearts can share several of these features, we propose a pumping
mechanism that combines aspects of both traditional peristalsis and impedance pump-
ing: bidirectional traveling waves of active contraction of an elastic boundary that is
fully coupled to the fluid. This mechanism is based on observations of the tubular,
valveless heart of tunicates (Chordata: Tunicata). Tunicates are the closest inverte-
brate relatives to vertebrates and are used as a model organism for molecular heart
development [4,14,32]. Furthermore, tunicates come in a wide variety of sizes with
hearts that span important transitional ranges of 0.1 < Wo < 10.

The tunicate heart consists of a myocardium which is enclosed by a pericardium,
both tissues are one cell layer thick and are separated by a fluid-filled intrapericardial
space [11]. The pericardium is stiff and provides structural support to the myocardium
[29]. The myocardium, connected to the the pericardium only at a line that runs
down the length of the heart tube, consists of a single, flexible layer of myoepithelial
contractile cells which contract to reduce the diameter of the inner lumen [1,11,13].
Muscle fibers wind around the entire length of the heart tube, and traveling action
potentials that initiate contraction have also been measured along the entire length
[1,13]. Myocardial contractions begin at pacemaker regions at either ends of the heart
tube; one pacemaker causes local depolarization of myocardial cells which propagates
down the contractile region of the heart tube. The propagation of action potentials may
occur in either direction.

The neuromechanical pumpingmechanismmodels the basic kinematics of pumping
by tunicate hearts by using the FitzHugh–Nagumo equations to model the activation-
signal propagation. The activation signal propagates down the heart tube and initiates
an applied force (acting as the muscle) that reduces the diameter of the heart tube.
The immersed boundary method (IBM) is used to model the interactions of this trav-
eling wave of applied force, the flexible boundary of the heart tube, and the coupled
interactions between the flexible structure and the surrounding fluid. Each simulation
includes a stiff boundary enclosing the heart tube (a pericardium) to provide structural
support to the contracting region.

In this study, we investigate flow produced by the neuromechanical pumping model
for the parameter space relevant to the tunicate, Ciona savignyi. We compare the per-
formance of the neuromechanical pumping model to models of traditional peristalsis
and impedance pumping at a range of Wo and pumping frequencies for conduction
velocities that are both coupled to pumping frequency and constant.

123

Author's personal copy



A. Baird et al.

2 Methods

2.1 Immersed boundary method

The equations describing an elastic heart driving a viscous fluid were solved using
the immersed boundary method. The immersed boundary method was first developed
by Peskin [23] to simulate cardiac flows in the adult human heart, and this method
provides a relatively straightforward approach for solving fully-coupled fluid-structure
interaction problems. Since its original development, a number of other methods have
been used to handle the fully-coupled fluid structure interaction problem in a similar
way [20]. The method works well at a variety of scales found below the turbulent
regime, making it useful in many biological applications. Some of these applications
include swimming organisms in viscoelastic fluids [27], insect flight [19], and lamprey
swimming [28].

The immersed boundary method handles the problem of having an elastic boundary
immersed in an incompressible viscous fluid by using two separate but interactive
coordinate frames. The incompressible fluid is discretized on a fixed Cartesian grid
(Eulerian frame) and the elastic boundary is discretized on a moving curvilinear mesh
(Lagrangian frame). The deformation of the boundary generates a force which is
imparted to the surrounding fluid. The fluid is then driven by this force, and the
boundary moves at the local fluid velocity.

The governing equations for the fluid are defined by the full, 2D Navier–Stokes
equations given as

ρ

(
∂u
∂t

+ u · ∇u
)
= −∇ p(x, t)+ µ∇2u+ f(x, t), (2)

∇ · u = 0. (3)

where µ is the dynamic viscosity defined as νρ, ρ is the density of the fluid, p is the
pressure, and u is the velocity of the fluid. Equation 2 is the momentum equation for
a fluid, and Eq. 3 defines the incompressibility of a constant density fluid.

The body force, f(x, t) is particular to the application and may include resistance to
bending, resistance to stretching, displacement from a tethered position, the action of
virtual muscles, or external forces [23]. One of the simplest types of force is a penalty
force that is proportional to the displacement of the immersed boundary from a target
or preferred position. This target position could be fixed or move with a prescribed
motion. The position in Cartesian coordinates of the immersed boundary that interacts
with the fluid is given by X(s, t). Here s describes the position of a point on the
boundary along its length. To move the boundary in a preferred motion, the positions
of the target points are described using Cartesian coordinates that may change in time
as defined byY(s, t). When the immersed boundary points deviate from the preferred
position, a force is applied that is proportional to the distance between the target and
actual boundaries. This force can be adjusted by changing the magnitude of ktarget so
that the distance between the actual boundary and its preferred configuration is kept
within some tolerance. The force that results follows Hooke’s law and is defined to
be:
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Ftarget (s, t) = ktarget (Y(s, t) − X(s, t)). (4)

Note that this method was used to move sections of the boundary in a prescribed
motion for the peristalsis and valveless pumping models described below.

In addition to the target force, forces may also be generated through the elastic
properties of the boundary. For this application, every boundary point along the heart
tube is connected by a series of beams and springs that resist bending and stretching,
respectively. These additional forces can be calculated as

Fbeam(s, t) = κbeam
∂4X(s, t)

∂s4
, (5)

Fspring(s, t) = κspring

{(∣∣∣∣
∂X(s, t)

∂s

∣∣∣∣ − 1
)

∂X(s, t)/∂s
|∂X(s, t)/∂s|

}
. (6)

Equation 5 is the beam equation which describes the force generated due to the resis-
tance to bending, and κbeam is the corresponding coefficient of stiffness. Equation 6
describes the force resulting from the tube’s resistance to stretching and compression,
and κspring is the corresponding spring coefficient. A summation of all three forcing
terms is then used to describe the total force applied to the fluid due to the boundary.
This force is defined to be

F(s, t) = Ftarget (s, t)+ Fbeam(s, t)+ Fspring(s, t). (7)

To spread this force to the surrounding fluid discretized on a Cartesian grid and to
move the boundary at the local fluid velocity, Eqs. 2 and 3 are coupled to the boundary
equations using integral transforms with delta function kernels:

f(x, t) =
∫

F(s, t)δ(x − X(s, t))ds (8)

∂X
∂t

= u(X(s, t), t) =
∫

u(x, t)δ(x − X(s, t))dx. (9)

To numerically approximate these integral transforms, a regularized delta function,
δh , is used,

δh(x) =
1
h2

φ
( x
h

)
φ

( y
h

)
, (10)

where h = dx is the numerical mesh width. Here we can define φ(r) as

φ(r) =

⎧
⎨

⎩

1
4 (1+ cos(πr

2 )) |r | ≤ 2

0 otherwise
(11)

where r is the distance from the Lagrangian point. A more detailed discussion of such
regularized delta functions may be found in [23]. The smoothed approximation to the
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force density is now defined in the Eulerian frame as f(x, t). To numerically solve
the fluid equations, Eqs. 2 and 3 are discretized on a periodic 630 × 630 grid and
solved using a fast Fourier transform fluid solver, details of which can be found in
[24]. Since most of the action is within the racetrack, the flow velocity is negligible
at the boundary, and the periodicity has little effect on the results. Once the fluid
velocity is calculated, a discretization of Eq. 9 with the regularized delta function is
used to interpolate the local fluid velocity to the Lagrangian boundary points, and the
boundary is moved at this velocity. This effectively enforces a no-slip condition at
the boundary. Once the new position of the boundary is updated, one time-step of the
immersed boundary routine is concluded.

2.2 Model set up

To investigate the three pumping mechanisms, a numerical model of the tube is
constructed in two dimensions (not axisymmetric). For comparison with previous
analytical, numerical, and experimental work, the computational immersed boundary
will resemble a closed racetrack. The section of tube where the contraction occurs is
flexible, and the remainder of the racetrack is relatively rigid, see Fig. 1. The race-
track is constructed by connecting two half circles to two straight portions of tube.
These circles are off center with radii set so that the diameter of the channel is equal
throughout. The circular sides and the top of the racetrack are tethered to target points
so that they are relatively rigid.

For the neuromechanical and impedance models, the bottom straight portion of the
racetrack resists bending and stretching with no tethered points so that the boundary

d

Flexible

Rigid

ri ro
R1 R2

y

x

Fig. 1 Model of a closed valveless racetrack. Dotted portions identify flexible regions and solid lines
indicate rigid regions. Pumping mechanics are implemented along the flexible section denoted by dotted
lines. R2 is the inner radius, R1 is the outer radius, d is the diameter, ri is the distance to the inner straight
tube from the origin (and also the distance to the center of the offset circular regions), ro is the distance
from the origin to the outer straight portion of the tube
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Table 1 Mechanical variables
for the heart tube simulations

Parameter Value

Density of the fluid [ρ]
( kg
m3

)
1025

Viscosity of the fluid [µ]
( kg
ms

)
Prescribed

Bending coefficient of the boundary [κbeam ] (Nm2) 3.24 × 106

Stretching stiffness of the boundary [κspring]
( kg
s2

)
3.24 × 106

Stretching stiffness of target points [κtarget ]
( kg
s2

)
3.24 × 106

Table 2 Non-dimensional
parameter values used for
solving the FitzHugh Nagumo
equations and constructing the
pericardium

Parameters were tuned to match
the dynamics of the tunicate
heart

Parameter Value

Threshold potential [a] 0.1

Strength of blocking [ϵ] 0.1

Diffusion coefficient [D] 30–220

Resetting rate [γ ] 0.5

Current injection [I] 0.5

freq [ f ] (Hz) 0.1–2.1

canmove freely. For the peristalticmodel, the bottom of the racetrack is also connected
to tethered points that move with a prescribed motion. To describe the curved regions
of the tube, we define the inner radius to be R2, the outer radius to be R1, and the
horizontal shift as ri , see Fig. 1. The half circles are constructed by setting the (x, y)
coordinates as

(x, y) =

⎧
⎨

⎩

(R2 cos(θ), R2 sin(θ)± ri ) r = R2

(R1 cos(θ), R1 sin(θ)± ri ) r = R1

(12)

with the± indicatingwhich side of the tube you are describing.Note that the horizontal
shift is the same distance as to the bottom straight tube. Also note that θ ∈ (− 3π

2 , π
2 )

for the right hand portion of the tube and θ ∈ (π
2 ,− 3π

2 ) for the left hand portion. The
racetrack is immersed in a incompressible viscous fluid with constant density, ρ. For
theWo sweeps where frequency is kept constant, the dynamic viscosity,µ, is adjusted
to obtain the correctWo. Relevant physical and numerical parameters are summarized
in Tables 1 and 2.

2.3 Pumping mechanisms

2.3.1 Neuromechanical model

The neuromechanical model combines the characteristics of previousmodels of valve-
less, tubular pumping, namely: active waves of contraction along an elastic tube and
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bidirectional, passive, elastic waves. As motivation for the inclusion of active waves of
contraction we note that traveling actions potentials have been recorded in the hearts
of Ciona intestinalis (a sister species to Ciona savignyi) in previous studies by [13].
These traveling action potentials are known to activate the muscular fibers that run
the length of the heart tube. A complete mathematical model of the tunicate heart
should then incorporate both the fluid dynamics, elastic properties of the tube, and the
activation of contractile muscles along its length.

To begin modeling this system, we first need to describe how to best model trav-
eling action potentials in a heart tube. The Hodgkin–Huxley equations were the first
quantitative model of propagation of an electrical signal along excitable cells, such as
the excitable myocardial cells found in the tunicate heart [9]. The essential dynam-
ics of this model have since been captured by the reduced order FitzHugh–Nagumo
equations [5]. The dimensionless form is given by:

∂v

∂t
= D∇xv + v(v − a)(v − 1) − w − I(t) (13)

∂w

∂t
= ϵ(v − γw), (14)

whereD = diffusion rate of potential, v(x, t) =membrane potential,w(x, t) = block-
ing mechanism, a = threshold potential, γ = resetting rate, ϵ strength of blocking,
and the applied current I(t), which is a function of time, t . Here v represents the fast
variable (potential) andw represents the slow variable (sodium channel blocking), the
kinetics of which are controlled by the parameter: ϵ << 1. Phase portraits of this
non-linear system have been shown to capture many salient dynamical properties of
cardiomyocytes [12].

To couple the applied force that drives the movement of the boundary to the elec-
tropotential given by the FitzHugh–Nagumo equations, please refer to Fig. 2. Along
the elastic portion of the racetrack, springs with variable stiffness are connected to the
top and bottom of the elastic section of tube. The stiffnesses are functions of the trav-
eling electropotential which varies in time due to the current applied to the pacemaker

I(t)

V(x,t) V(x,t)

Felectro (V(x,t))ds

Fig. 2 This diagram shows our numerical model of the coupled dynamics problem. We attach springs to
to the top and bottoms elastic walls of the tube and a force proportional to the traveling action potential,
Felectro(V (x, t)). We then inject a current, I (t), at a location of the pacemaker periodically throughout the
simulation. The FitzHugh–Nagumo equations are solved along the tube walls to determine the electropo-
tential at each position and at each time. The force is generated by changing the stiffness of these springs,
and results in contractions down the length of the tube wall
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Fig. 3 The figure on the left shows an initial current begin initiated in the pacemaker region. The figure on
the right shows the bi-directional propagation of the action potentials down the length of the domain. All
parameters are dimensionless for this figure

region. At each time step we solve for these potentials by discretizing the FitzHugh
Nagumo equations as follows:

vi = vi−1+ dt f

(

D
(
vi − 2vi−1 + vi−2

dx2f

)

−vi−1(vi−1 − 1)(vi−1 − a)−ωi−1+ Ii

)

(15)

ωi = ωi−1 + ϵdt f (vi−1 − γωi−1). (16)

Here we use a forward-Euler time-step integrator and a centered differencing scheme
to represent the spatial diffusion operator. Dynamics of this system can be seen in Fig.
3. The other parameters are prescribed to capture the associated dynamics observed in
the tunicate heart tubes. Time is scaled in order to match the dynamics of the generated
action potentials to the desired active wave of contraction and is given by:

dt f =
dtF
T

, (17)

whereF is a non-dimensional scaling parameter and T is the desired pumping period.
The spatial location, x , is also scaled in order to match the desired dynamics of the
active wave of contraction. Once we calculate the electropotential at a given point in
space, we can determine a spring stiffness that is used to describe the action of the
muscles at time t ,

κe(x, t) = κm(v
4(x, t)). (18)

In this simplified model of the muscle, κm is a scaled spring stiffness and v(x, t) is
the traveling action potential. This new spring stiffness is then used to determine the
force generated by the springs that connect the bottom and top of the elastic tube,
representing the action of the muscle. This phenomenological model has the effect
of producing a wave of active contraction. Note that the passive elastic properties of
the heart tube, κbeam and κspring , do not change in time. The value of κm is tuned to
produce the amount of contraction observed in Ciona hearts.
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Table 3 Spatial dimensions and
numerical parameters for the
heart tube simulations

These are dimensional
parameters used to simulate
impedance pumping and
peristalsis to investigate scaling
effects on pumping efficacy

Parameter Value

Length of domain (m) 5.0 × 10−4

Width of domain (m) 5.0 × 10−4

Diameter of tube [d] (m) 3.5 × 10−5

Outer radius [R1] (m) 1.0 × 10−4

Inner radius [R2] (m) R1—diameter

Distance to inner straight tube [ri ] (m) 1.25 × 10−4

Distance to outer straight tube [ro] (m) 1.25 × 10−4 + d

Length of straight tube (m) 2.5 × 10−4

Frequency of pumping ( 1s ) 0.3–2.2

Womersley number [Wo] 0.3–16

Percent of contraction 0.8

Pulse Period (s) 1.0

Final simulation time (s) 8.0

Time step [dt] (s) 3.05 × 10−5

Velocity output time step (s) 0.025

Spatial step [dx] (m) 8.33 × 10−7

Boundary step [ds] (m) 4.17 × 10−7

2.4 Simulation parameters and data analysis

Default parameters used for simulations are reported in Tables 3 and 1. The elastic
properties chosen are within the range of those estimated for Ciona [29]. Note that
for these dimensions and range of Wo, the dynamics of flow do not seem to depend
significantly upon changes in material properties of the heart tube over a couple orders
of magnitude [29]. Immersed boundary simulations of neuromechanical pumping and
impedance pumping were conducted at a variety ofWo by varying the viscosity of the
fluid. To compare the performance of the pumpingmechanisms, the spatially averaged
velocity is taken along a cross section of the diameter of the tube in a non-contracting
region. These spatially averaged velocities are then temporally averaged across the
pulses to determine the net flow as a function ofWo as well as the pumping frequency
with viscosity held constant. These velocities are presented as non-dimensional num-
bers, calculated by dividing by a characteristic velocity defined to be: d

T , here, d is the
diameter of the computational model tube and T is the period of pumping. We also
non-dimensionalized time by dividing by the pumping period.

2.4.1 Peristalsis and impedance pumping

To compare the flow produced by the neuromechanical pump, we will reference pre-
viously published data generated using models of peristalsis and impedance pumping
that have been described and reported in [2].
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To simulate peristalsis, the points of the contracting region of the tube are teth-
ered and move with points that move by prescribed motion. The peristaltic wave is
constructed from the following parts: the initial contraction, the translation of the con-
tracted region, and decompression. The contraction begins on the left hand side of the
straight tube and travels to the end of this section before the next wave begins.

The model of impedance pumping includes an isolated region of active contraction
where the motion is generated by tethering those boundary points to target points that
move with a preferred sinusoidal. This movement then generates passive elastic waves
that travel down the elastic portion of the tube. The region of active contraction is off
center, and its position affects the direction and magnitude of the flow. The actuation
site used for impedance pumping coincided with the placement of the pacemaker used
for neuromechanical pumping.

3 Results

3.1 Flow characteristics produced by neuromechanical pumping

We present a model of flow through a valveless, tubular heart that combines elements
of impedance pumping and peristalsis. Specifically, this model includes a bidrectional
travelingwave of active contraction originating at an off-center pacemaker that initiates
the contraction of an elastic boundary. The pacemaker is modeled as a periodic applied
current I(t) that triggers the propagation of action potentials along the heart tube, see
Fig. 2. This is distinctly different from traditional impedance pumping because there
is an active, rather than passive, traveling wave. It is also different from a traditional
model of prescribed peristalsis in that the contraction is bidirectional and the resulting
motion is due to the interaction of the active force generation, the elastic boundary,
and the fluid.

Figure 4 shows a vorticity map, configuration of the elastic boundary, and the
position of passive tracer particles during the first pulse for t = T

4 ,
T
2 ,

3T
4 , and T .

Note that the colormap used is normalized for all figures, so that the magnitude of
vorticity can be directly compared between each case. The Wo was set to 1.0 and the
frequencywas set to 1Hz.Figure 4a shows the contractionwavemovingbidirectionally
from the pacemaker region. In Fig. 4b, the contraction wave is reflected at the inflow
tract and combines with the right traveling wave (Fig. 4c). At the end of the cycle, the
passive tracer particles have been pushed beyond the outflow tract and into the rigid
section of the racetrack. Note that the dynamics of the pump share many of the same
qualities as those described for traditional impedance pumping.

3.2 A comparison of the three types of pumping mechanisms

To test the effects of the choice of pumping mechanism on flow generated by the tubu-
lar, valveless heart model, we also performed corresponding simulations for peristalsis
and impedance pumping. For this comparison, the pumping frequency was set to 1
Hz for all cases. The Wo was set to 1 and was varied in the subsequent section by
changing the dynamic viscosity, µ.
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Fig. 4 Neuromechanical pumping during the first pulse cycle at t = T
4 , T2 , 3T4 , and T . The Wo was set

to 1.0 and the frequency was set to 1 Hz. The graymap shows the vorticity, and the black dots are passive
tracers that move at the local fluid velocity

Figure 5 shows the vorticity, position of the elastic boundary, and positions of the
tracer particles during the first pulse of impedance pumping for t = T

4 ,
T
2 ,

3T
4 , and

T . The characteristic, passive traveling wave of the impedance pump is damped by the
shear forces encountered from the high viscosity of the fluid. Passive tracer particles
marking fluid flow in the tube show that the flow is close to reversible, resulting in
very little net movement of the fluid. Impedance pumping appears to have limited to
no efficacy at low Wo for this choice of elasticity and geometry.

Figure 6 shows the vorticity, position of the elastic boundary, and positions of the
tracer particles during the first pulse using peristalsis for t = T

4 ,
T
2 ,

3T
4 , and T . Fluid

flows produced by peristalsis show steady, counter-clockwise flow at Wo = 1, f =
1.0 Hz. Figure 6a shows the intial contraction of the tube followed by the translation of
the compression site (b, c). The contraction is relaxed at the end of the cycle (Fig. 6d).
Flow profiles show an initial acceleration of fluid with the beginning of contraction,
steady flow during translation of the contraction down the tube with flow decelerating
when the contraction relaxes.

Figure 7 shows the dimensionless flow velocity averaged along a cross section in
the rigid outflow tract vs. dimensionless time for each of the pumping mechanisms at
Wo = 1 and f = 1. For these parameters, impedance pumping shows low amplitude
oscillatory flows with little net transport. The fluid is pushed in the positive direction
(counterclockwise) during contraction and is pulled in the negative (clockwise) direc-
tion during re-expansion. In the case of peristalsis, the fluid accelerates rapidly during
the initial contraction, maintains a nearly constant speed during the translation of the
contraction site, and rapidly decelerates during the re-expansion of the contraction site.
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Fig. 5 Impedance pumping during the first pulse cycle at t = T
4 , T2 , 3T4 , and T . The Wo was set to 1.0

and the frequency was set to 1 Hz. The graymap shows the vorticity, and the black dots are passive tracers
that move at the local fluid velocity

Fig. 6 Peristaltic pumping during the first pulse cycle at t = T
4 , T2 , 3T4 , and T . The Wo was set to 1.0

and the frequency was set to 1 Hz. The graymap shows the vorticity, and the black dots are passive tracers
that move at the local fluid velocity

Significant net flow is produced in the positive (counterclockwise) direction. In the
case of neuromechanical pumping, The flow rapidly accelerated during the initial con-
traction, exceeding the instantaneous speeds reached by the peristaltic mechanism. At
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Fig. 7 Dimensionless spatially average flow velocity (u/U ) versus dimensionless time (t/T ) at f = 1.0Hz
and Wo = 1.0. Solid line neuromechanical suction pump, dashed line peristaltic pumping, dotted line
dynamic suction pumping

the end of the pulse, some back flow is also produced. On average, the fluid is pushed
in the positive (counterclockwise) direction.

The significant effect of viscous damping, that caused little net flow for the
impedance pump, does not have the same effect for neuromechanical pumping and
peristalsis. Compared to impedance pumping, neuromechanical pumping achieves
higher maximum and lower minimum flow velocities. Neuromechanical pumping
also produces higher bulk flow non-dimensional velocities (u/U) 10, than impedance
pumping, 1, see Fig. 7. Peristaltic pumping produces strong positive flows with little
back flow, and the flow rapidly approaches a constant velocity during translation of the
contraction site. Flow produced by neuromechanical pumping is more transient and
unstable, not reaching a steady flow speed during the translation of the traveling wave
down the tube that is characteristic of peristalsis. Maximum andminimum flow speeds
are of greater magnitude than peristalsis. Bulk fluid movement is somewhat less for
neuromechanical pumping compared to traditional peristalsis, 3 and 1 respectively,
see Fig. 8.

3.3 Effect of Womersley number on flow rate

When Wo is set to 1, little flow is produced by impedance pumping given the signifi-
cant amount of viscous damping and lack of passive traveling waves. To compare the
performance of each of the pumps across a range of scales, Wo was varied from 0.3
to 16. This range includes the case where unsteady effects are negligible (Wo = 0.3)
and the case where inertia is significant (Wo = 16). Figure 8 shows the dimensionless
spatially and temporally average flow velocity (u/U ) versusWo. Both peristalsis and
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Fig. 8 Dimensionless spatially and temporally average flow velocity (u/U ) versus Wo. Solid line neu-
romechanical suction pump, dashed line peristaltic pumping, and dotted line dynamic suction pumping.
Markers indicate temporally averaged simulations for various Womersley numbers

neuromechanical pumping produce strong positive (counterclockwise) flows across
the range of Wo, around 3 and 1 diameters per beat, respectively. Net flow is reduced
for the lower Wo for peristalsis given the significant viscous resistance. Impedance
pumping produces clockwise flow for most Wo, although bi-directional flow is char-
acteristic of impedance pumping dependent upon Wo, frequency, and location of
actuation site. For this choice of geometry and elastic properties, mostly clockwise
flow is achieved with the exception of Wo = 2 where max counterclockwise flow is
reached. It is worthwhile to note that impedance pumping can produce strong flows
for Wo >> 1 for some choices of parameters [3,8,10].

3.4 Effect of pumping frequency on flow rate

One of the main characteristics of impedance pumping is the nonlinear relationship
between frequency and flow [3,8]. For a given choice of geometry and elasticity
of the tube, peaks in net flow can be seen at certain frequencies while changes in
flow direction may be observed for other choices of frequency [10]. For the case
of peristalsis, the relationship between frequency and flow is linear assuming that the
wave speed changes in proportion to the pumping frequency [6]. If pumping frequency
and wave speed are decoupled, leading to different waveforms as the frequency is
varied, the relationship between frequency and flow may be nonlinear [30].

To determine whether or not a nonlinear frequency-flow relationship exists for
the neuromechanical pumping mechanism presented in this paper, we performed the
following simulations: (1) pumping frequency was varied from 0.3 to 2.2 Hz while
the conduction velocity of the action potential used to initiate contraction was varied
proportionally; and (2) the pumping frequency was varied but the conduction velocity
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Fig. 9 Average dimensionless fluid velocity vs. pumping frequency for the neuromechanical pump. Left the
wave speed changes proportionally with the pumping frequency. Translational compressionwave travels the
length of the elastic tube before the next compression begins. Right constant wave speed. The compression
wave speed stays constant regardless of the frequency of the pacemaker. At high pumping frequencies, a
new contraction is initiated before the prior contraction wave finishes

of the action potential was held constant. In the first case, the compression wave
travels the length of the elastic tube before the next compression begins. In the second
case, a new contraction may be initiated before (high frequencies) or well after (low
frequencies) the prior contraction wave has finished. The results of these simulations
are given in Fig. 9. Both graphs show the spatial and temporally averaged flow speeds
as a function of the pumping frequency. Note that in both cases one can observe a
nonlinear relationship between frequency and flow. Unlike the case of impedance
pumping, however, the net flow is always in the positive (counterclockwise) direction.

4 Conclusions

In this paper, we present a neuromechanical model to describe pumping in an ide-
alized tunicate heart. The scale (described here using the Womersley number, Wo)
was matched to a typical heart of the tunicate Ciona savignyi. The neuromechani-
cal model produced significant flows that share some of the main characteristics that
have been described in tubular hearts: (1) a nonlinear relationship between heartbeat
frequency and flow; (2) peak flows that exceed the wave speed; and (3) a bidirec-
tional wave of contraction that emanates from the pacemaker region. We also note that
the neuromechanical model that includes elastic deformations that emerge from the
fluid-structure coupling generate more complicated kinematics than that of a simple
prescribed contraction wave.

In the debate surrounding the pumping mechanisms of tubular, valveless hearts,
it has been observed that the kinematics and flow produced by many tubular hearts
resemble those produced by impedance pumping [6]. Our results show that similar
dynamics may also be observed using a traveling wave of active contraction along
an elastic tube. When evaluating possible pumping mechanisms, it is important to
consider the specific geometry, scale, and elastic properties of the heart. For the para-
meters considered here, impedance pumping did not produce significant net flow.
Interestingly, a prescribed peristaltic wave of contraction produced the strongest flow
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of all mechanisms considered. This is due to the fact that our neuromechanical model
generated significant back flow between each contraction.

Based on the definition of a peristaltic pump typically used in the biological litera-
ture whereby flow is generated by a traveling wave of contraction, one might consider
the neuromechanical pump presented here as a way to model peristalsis. It is impor-
tant to note, however, that the neuromechanical pump includes a bidirectional wave of
active contraction that is not a typical feature of peristaltic pumps. In addition, some of
the motion of the elastic tube is due to the interaction of the elastic boundary with the
fluid and the relatively rigid inflow and outflow tracts. One could argue that the result-
ing kinematics and flows are influenced to some degree by the Libeau mechanism that
drives fluid in dynamic suction pumping. For our purposes, we will simply describe
the neuromechanical pumping mechanism as it is implemented: a bidirectional wave
of active tension imposed on an elastic tube.
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