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Abstract Valveless, tubular pumps are widespread in the
animal kingdom, but the mechanism by which these pumps
generate fluid flow is often in dispute. Where the pumping
mechanism ofmany organswas once described as peristalsis,
other mechanisms, such as dynamic suction pumping, have
been suggested as possible alternative mechanisms. Peristal-
sis is often evaluated using criteria established in a technical
definition for mechanical pumps, but this definition is based
on a small-amplitude, long-wave approximation which bio-
logical pumps often violate. In this study, we use a direct
numerical simulation of large-amplitude, short-wave peri-
stalsis to investigate the relationships between fluid flow,
compression frequency, compression wave speed, and tube
occlusion. We also explore how the flows produced differ
from the criteria outlined in the technical definition of peri-
stalsis.We find thatmany of the technical criteria are violated
by our model: Fluid flow speeds produced by peristalsis
are greater than the speeds of the compression wave; fluid
flow is pulsatile; and flow speed have a nonlinear relation-
ship with compression frequency when compression wave
speed is held constant. We suggest that the technical defini-
tion is inappropriate for evaluating peristalsis as a pumping
mechanism for biological pumps because they too frequently
violate the assumptions inherent in these criteria. Instead, we
recommend that a simpler, more inclusive definition be used
for assessing peristalsis as a pumping mechanism based on
the presence of non-stationary compression sites that prop-
agate unidirectionally along a tube without the need for a
structurally fixed flow direction.
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1 Introduction

Tubular pumps are found across the animal kingdom in all
stages of development (e.g., Griffiths et al. 1987; Gashev
2002; Xavier-Neto et al. 2007; Lee and Socha 2009; Glenn
et al. 2010; Xavier-Neto et al. 2010; Krenn 2010; Greenlee
et al. 2013; Harrison et al. 2013a). In all vertebrate embryos,
the heart first forms as a valveless tubular pump (e.g., Taber
2001). Similarly, the hearts ofmany non-vertebrate chordates
such as tunicates are also valveless, tubular pumps (Anderson
1968; Kalk 1970; Glenn et al. 2010; Waldrop and Miller
2015). In the last 10years, the mechanism of pumping in
tubular hearts and other tubular pumps has been described
as either peristalsis or dynamic suction pumping (Forouhar
et al. 2006; Taber et al. 2007; Männer et al. 2010; Maes et al.
2011).

For the case of peristalsis, a wave of active contraction
propagates down the length of the tube. Since the advent of
mechanical peristaltic pumps (i.e., roller pumps), the techni-
cal definition of a peristaltic pump has been refined to include
these characteristics (summarized in Männer et al. 2010):

1. Peristaltic pumps are positive-displacement pumps,
which displace a fixed volume to create fluid flow.

2. Peristaltic pumps have non-stationary compression sites,
i.e., waves of compression that unidirectionally propa-
gate down a flexible tube.

3. Peristaltic pumps produce continuous flow.
4. There are no structurally fixed directions of flow (e.g.,

there are no one-way valves), and the direction of flow is
determined by the direction of the compression wave.
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5. Flow velocity is equivalent to the speed of the compres-
sion wave. Peak flow velocity does not exceed the speed
of the compression wave.

6. There is a linear relationship between the frequency of
the compression wave and flow rate it produces.

The principles of the technical definition are based upon a
body of analytical work using small-amplitude and/or long-
wave approximations of peristaltic pumpingwhere nonlinear
effects, such as inertia and large flows in the radial direction,
are small (Jaffrin and Shapiro 1971; Hanin 1968; Shapiro
et al. 1969; Fung and Yih 1968). These results may not apply
to cases when inertia is non-negligible or where the com-
pression amplitude is not small relative to the diameter or
the wavelength. These nonlinear cases do, however, charac-
terize many biological pumps (Santhanakrishnan and Miller
2011).

There are, however, some numerical and analytic results
available for large-amplitude and/or short-wavelength peri-
stalsis. Childress (2009) showed analytically for large occlu-
sion ratios and long wavelengths that the peak flow velocity
can exceed the peristaltic wave speed. Pozrikidis (1987)
modeled peristalsis for relatively small wavelengths in a
Stokes fluid. He found that peak flow velocities are nearly
twice the wave speed for an 80% occlusion of the tube.
Large-amplitude, short-wave peristalsis has also been stud-
ied numerically for Stokesian viscous and viscoelastic fluids.
Teran et al. (2008) simulated up to 50% occlusion and
reported onlymeanflow rates for viscous andviscoelastic flu-
ids. Aranda et al. (2011) simulated high-amplitude peristaltic
pumping in a three-dimensional tube with a phase-shifted
asymmetry. The mean flow rate approached the wave speed
for full occlusion, implying that the peak speeds are higher
than the wave speed given the large spatial and temporal
variations in the flow. Ceniceros and Fisher (2012) also sim-
ulated viscoelastic fluids at high occlusion ratios but also
only reportedmean flow rates. ForNewtonian fluids in nearly
occluded tubes, mean flow rates approached the wave speed.
Given the large spatial variations in flow as evidenced by the
given vorticity plots, it is likely that peak flow speeds were
much higher than the wave speed.

In contrast, dynamic suction pumping is defined by an
isolated region of active contraction that is asymmetrically
located in a section of flexible tube connected to relatively
stiffer inflow and outflow tracts (Liebau 1954, 1955, 1957).
Passive elastic traveling waves emanate from the active con-
traction site, and these waves drive flow. Analytical models
(Auerbach et al. 2004; Bringley et al. 2008), physical exper-
iments (Hickerson et al. 2005a; Bringley et al. 2008), and
numerical simulations (Jung and Peskin 2000; Jung et al.
2008; Baird et al. 2014) support that this pumping mecha-
nism can effectively transport fluid under certain conditions.
Furthermore, these pumps are characterized by a nonlinear

frequency–flow relationship, reversals in flow directions, and
flow speeds higher than the wave speed.

Based on the technical definition of peristalsis, Forouhar
et al. (2006) make the case that the zebrafish embryonic
heart is not a peristaltic pump by observing the kinematics of
heart compression and blood flow in vivo. They found these
observations violated some of the principles that underpin
peristalsis, specifically: They observed bidirectional com-
pression and reflection waves of the heart muscle and imply
that activation of the muscle was limited to one site (#2
and #3), the flow velocity inside the heart exceeded the
compression wave speed (#5), and there was a nonlinear
relationship between blood flow speed and the frequency
of heart compressions (#6). As a result of these observa-
tions, Forouhar et al. (2006) reject peristalsis and suggest that
the fluid dynamics of the embryonic vertebrate heart share
more of the properties of dynamic suction pumping than
peristalsis (a localized site of active compression is placed
off-center, and the resulting traveling waves are passive elas-
tic).

Since the publication of this paper nearly 8years ago,
some researchers have speculated that other biological pumps
drive blood and other fluids using dynamic suction pump-
ing (Davidson 2007; Vogel 2007; Harrison et al. 2013b).
Other researchers continue to describe tubular pumping in
the embryonic heart as peristalsis (Christoffels and Moor-
man 2009; Postma et al. 2008; Taber et al. 2007). Some of
these tubular pumps, like tunicate hearts andmanyembryonic
hearts, violate the low-amplitude, long-wave assumptions
of the technical definition of peristalsis. In many of these
cases, the compression wave almost completely occludes the
tube, action potentials are known to propagate the length of
the entire tube by activating helically wound muscle fibers
(Anderson 1968; Kalk 1970), and the width of the tube is
not significantly longer than its length. Furthermore, these
pumps are often at a scale where neither inertial nor viscous
effects can be neglected.

In this paper, we use direct numerical simulation of the
fully coupled fluid-structure interaction problem to quantify
the flows generated by large-amplitude, short-wave peristal-
sis.We then evaluatewhich aspects of the technical definition
of peristalsis a large-amplitude, short-wave peristaltic pump
can fulfill. The simulations were done using the immersed
boundary method (Peskin 2002). The peristaltic wave was
prescribed as a traveling sine wave. The length of the tube
was four times the diameter, and the region of prescribed
motion was centered in the middle of the tube. The ends of
the elastic section were allowed to bend as determined by the
coupling between the fluid and the elastic tube. We quantify
peak and average fluid speeds downstream of the compres-
sion region, the pressure at the inflow and outflow points of
the compression tube, and flow speeds at a point within the
compression region.
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2 Methods

2.1 The immersed boundary method

The modeling and numerical simulations of peristalsis were
conducted with the immersed boundary method (Peskin
2002) using the library IBAMR (Griffith 2014). The IB
method can be used either to simulate a boundary moving
with a prescribed motion or for solving for the motion based
on the interaction of the fluid with an elastic boundary. The
following outline describes the two-dimensional formulation
of the immersed boundarymethod, but the three-dimensional
extension is straightforward. For a full review of the method,
see Peskin (2002). The equations of fluid motion are given
by the Navier–Stokes equations:

ρ(ut (x, t) + u(x, t) · ∇u(x, t)) = −∇ p(x, t)

+μ∇2u(x, t) + F(x, t) (1)

∇·u(x, t) = 0 (2)

where u(x, t) is the fluid velocity, p(x, t) is the pressure,
F(x, t) is the force per unit area applied to the fluid by the
immersed boundary, ρ is the density of the fluid, and μ is the
dynamic viscosity of the fluid. The independent variables are
the time t and the position x.

The interaction equations between the fluid and the bound-
ary are given by:

F(x, t) =
∫

f(r, t)δ (x − X(r, t)) dr (3)

Xt (r, t) = U(X(r, t)) =
∫

u(x, t)δ (x − X(r, t)) dx (4)

where f(r, t) is the force per unit length applied by the bound-
ary to the fluid as a function of Lagrangian position and time,
δ(x) is a two-dimensional delta function, X(r, t) gives the
Cartesian coordinates at time t of the material point labeled
by the Lagrangian parameter r . Equation 3 applies force
from the boundary to the fluid grid, and Eq. 4 evaluates the
local fluid velocity at the boundary. The boundary is then
moved at the local fluid velocity, and this enforces the no-
slip boundary condition. Each of these equations involves
a two-dimensional Dirac delta function, δ, which acts as the
kernel of an integral transformation. These equations convert
Lagrangian variables to Eulerian variables and vice versa.

The force equations are specific to the application. In a
simple case where a preferred motion is enforced, boundary
points are tethered to target points via springs. The equation
describing the force applied to the fluid by the boundary in
Lagrangian coordinates is given by:

f(r, t) = ktarg (Y(r, t) − X(r, t)) (5)

where f(r, t) is the force per unit length, ktarg is a stiffness
coefficient of the tethering springs, and Y(r, t) is the pre-
scribed position of the target boundary.

2.2 Dimensionless numbers

To compare the flows of different pumps over a range of
length scales and velocities, it is a useful exercise to non-
dimensionalize the terms in the Navier–Stokes equations as
follows,

x′ = x
L

,

u′ = u
U

,

t ′ = f ∗ t,

where L ,U , and 1/ f ∗ are characteristic flow length, velocity,
and time scales, respectively. In this paper, we choose L to
be the diameter of the elastic section of the tube, f ∗ to be
the beat frequency of our base case, and the characteristic
velocity as U = L f ∗. Note the U describes the velocity in
terms of heart tube lengths per beat.

The dimensionless bending stiffness of the boundary may
then be calculated as

k′
bend = kbend

ρU 2L3 , (6)

where kbend is the flexural stiffness of the boundary. The
dimensionless spring stiffness may be written as

k′ = k

ρU 2L
, (7)

where k is the spring stiffness which describes the resistance
to stretching.

The dimensionless pressure can then be defined as

p′ = p

ρU 2 , (8)

where p is the dimensional pressure and U is the character-
istic velocity.

Of particular relevance to internal biological flows is the
Womersley number (Wo). The Wo describes to what extent
unsteady effects matter in pulsatile flows. It is given by the
following equation,

Wo = d

√
ω

ν
, (9)

where ω is the frequency of the pulse, d is the diameter
of the tube, and ν is the kinematic viscosity of the fluid.
Within the context of a blood vessel, when the value of
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Wo is high, the velocity profile is nearly flat over most
of the cross section and there is a small region near the
vessel wall known as the boundary layer where viscous
effects are important. Also, the flow at the center of the
tube is inertial and pulsatile. At the other low extreme end
of Wo, the velocity profile over the vessel cross section is
parabolic, and the flow is quasi-steady and viscous dom-
inated. The transient effects can be ignored when Wo is
sufficiently small, generally when Wo < 1, and this is
common in the case of microcirculation. Unless otherwise
noted, we vary the Wo by changing the viscosity of the fluid
only.

2.3 Numerical method

Weused an adaptive and parallelized version of the immersed
boundary method, IBAMR (Griffith 2014). IBAMR is a C++
framework that provides discretization and solver infrastruc-
ture for partial differential equations on block-structured
locally refined Eulerian grids (Berger and Oliger 1984;
Berger and Colella 1989) and on Lagrangian (structural)
meshes. IBAMR also includes infrastructure for coupling
Eulerian and Lagrangian representations.

The Eulerian grid on which the Navier–Stokes equations
were solved was locally refined near the immersed bound-
aries and regions of vorticity with a threshold of |ω| > 0.1.
This Cartesian grid was organized as a hierarchy of four
nested grid levels, and the finest grid was assigned a spa-
tial step size of dx = D/512, where D is the length of the
domain. The ratio of the spatial step size on each grid relative
to the next coarsest grid was 1:4. The numerical parameters
used for the simulations are given in Table 1.

2.4 Model of peristalsis

A numerical model of an elastic heart tube connected to
a rigid racetrack was constructed to study high-amplitude
peristaltic flows. The racetrack designwas used for easy com-
parison with previous models of tubular heart pumping (e.g.,
Jung and Peskin 2000; Hickerson et al. 2005b; Baird et al.
2014; Avrahami and Gharib 2008; Lee et al. 2012). The race-
track section was constructed by connecting two sections of

Table 1 Parameter values for two-dimensional immersed boundary
simulations

Parameter Value

Maximum time step (dt) 0.00001

Minimum Eulerian spatial step (dx) 0.01952

Lagrangian spatial step (ds) 0.00976

Domain size (D) 10.0

Refinement ratio (R f ) 4:1

Table 2 Dimensionless parameter values for the peristalsis model

Parameter Value

Length pumping section (L tube) 4.0

Diameter (d) 1.0

Contraction frequency ( f ) 0.25–3

Womersley number (Wo) 0.1–50

Spring constant (k′) 0.03–100

Bending stiffness (k′
bend) 0.001–1

Wave speed (c) 1.67–6

y coordinate of top of tube (Rtop) −0.1

y coordinate of bottom of tube (Rbot) −0.2

Amplitude of contraction (A) 0.1d–0.475d

Compression ratio 0.40–0.95

straight tube (one of which represents the elastic heart) to
curved sections. The resting diameter of the racetrack was
constant throughout its length. Dimensions and elastic prop-
erties of the racetrack are given in Table 2, and the model set
up is shown in Fig. 1a.

The bottom portion of the racetrack consisted of an elastic
section of dimensionless length L = 4.0 and dimensionless
diameter d = 1.0. The middle 3/4 of the tube was tethered
to target points that drove the peristaltic motion. Note that
the tube was initialized at rest in a straight configuration.
The amplitude of the peristaltic wave increased from zero
to its maximum amplitude after one pulse. To ensure con-
servation of volume inside the racetrack during pumping,
the ends of the elastic section were allowed to deform as a
result of the coupling between the elastic boundary and the
fluid. Note that the sides and top of the racetrack were also
tethered to target points that did not move. The target point
stiffness, ktarg was set equal to the spring stiffness k. This
parameter can be adjusted to minimize the distance between
the actual boundary point and its target position. The posi-
tion of the target points was determined by the following
equation,

ytop,bot = Rtop,bot ± A sin(2π f t + 2πcxt ) (10)

where ytop,bot is the y-coordinate of the top or bottom of the
tube, Rtop,bot is the distance of the top or bottom of the tube
from the horizontal centerline of the racetrack, A is the ampli-
tude of the contraction, f is the frequency of contraction, c
is the wave speed, and xt is the horizontal distance from the
beginning of the prescribed motion. The compression ratio
gives the percent occlusion, and is equal to 2A.

In addition to the racetrack design, we constructed an
open model of peristalsis which consisted of only the elastic
heart tube on the same domain (Fig. 2). The heart tube was
driven in an identical way to the racetrack design. This design
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Fig. 1 Panels showing racetrack circulatory system and compression
region with speed across the simulation area (background color) and
light blueflowmarker particles. a Initial simulation conditions (t = 0.0)
showing racetrack circulatory system (black lines), tube diameter d
(white vertical line), compression region, L tube (white horizontal line
between white boxes 3 and 4), tethered region (yellow bars) and marker

particles (light blue dots). Areas over which data were collected are
labeled as white boxes and a white/black point (see text for details on
calculations). b Simulation at t = 0.4. c Simulation at t = 0.8. d Sim-
ulation at t = 1.2. e Simulation at t = 1.6. f Simulation at t = 2.0.
Color scale units non-dimensional speed

allowed us to eliminate the possibility of Liebau pumping in
our closed, racetrack model by removing the flexible regions
of heart tube that connected the contracting region to the rigid
racetrack.

2.5 Parameter sweeps

We varied the values of four parameters in five separate sets
of simulations. (1) Wo was changed by altering the dynamic
viscosity μ of the fluid within the tube, which alters ν in
Eq. 9 since ν = μ/ρ, where ρ is fluid density. Wo ranged
from 0.1 to 10. (2) Tube occlusion was changed by alter-
ing the amplitude of contraction A in Eq. 10 by some factor

(compression ratio), which ranged from 40% tube occlusion
(compressionratio = 0.4) to nearly complete occlusion of the
tube (compressionratio = 0.95). (3) The speed of compres-
sion wave. (4) The frequency of compressions ( f in Eq. 10)
was changed, ranging from 0.5 to 2.0, while allowing the
speed of compression wave, c, to increase linearly. (5) The
frequency of compressions ( f in Eq. 10) was changed while
holding the speed of the compression wave, c, constant. Note
that the no-racetrack designwas used only for sweeps of com-
pression wave frequency.

The default parameter values used for simulation sweeps
other than the parameter of interest are: Wo = 1, f ∗ = 1,
c = 3.0, and compression ratio = 0.8.
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Fig. 2 Panels showing no-racetrack design and several waveforms at
simulation time = 2s. Waveforms are the result of keeping a constant
speed of compression wave, c = 3.0, while altering the frequency of
compression wave, f . a f = 1.0 (default value), b f = 0.5, c f = 2.0.
Note that the domains in this figure have been reduce to show detail of
the waveforms and do not reflect the domain on which the simulations
were performed

2.6 Data analysis

For each simulation, several calculations were made on fluid
flow velocity in VisIt 2.5.2 (Childs et al. 2012) (for the
racetrack design), MATLAB (for the no-racetrack design),
and R (Team 2011) (both designs). The compression wave
propagated along the compression tube from left to right
which drove fluid flow in the counterclockwise direction
around the racetrack (Fig. 1a–f). As a result, all positive flow
speeds indicate counterclockwise flow (in the direction of the
propagating compression wave) and negative values indicate
clockwise flow (opposite to the direction of the propagating
compression wave).
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Fig. 3 Umax,t versus simulation time t ′. Dotted lines indicate default
values for each parameter. Positive speed indicates movement of fluid
in the counterclockwise direction around the racetrack. Horizontal
dot-dash line indicates the non-dimensional speed of the compression
wave for a and b. a Womersley number, b compression ratio, c non-
dimensional speed of the compression wave, c

Uavg: At each time point in the simulation, the non-
dimensional magnitude of velocity |u′| of fluid flow was
spatially averaged across the cross section of the upper tube
of the racetrack indicated by a white box labeled 1 in Fig. 1a.
These mean speeds were then temporally averaged over the
entire simulation to find the average speed per simulation
Uavg, presented in Fig. 5a–c (black circles) and Fig. 8a (black
and gray circles).

Umax,t ,Umax: The non-dimensional maximummagnitude
of velocity across the same section of tube (white box labeled
1 in Fig. 1a) was also calculated for each time point of the
simulation, Umax,t . Fig. 3 shows Umax,t versus dimension-
less time. These numbers were temporally averaged over the
entire simulation to find the average maximum speed per
simulation, Umax, presented in Fig. 5a–c (white diamonds)
and Fig. 8a (white and gray diamonds).

Upeak: Using the non-dimensional, maximum speeds
across the upper section of tube (white box labeled 1 in
Fig. 1a) for each simulation time step, peak speeds (max-
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imum of maximum speed) were found for each pulse. For
each simulation, the peak speeds over each pulse were aver-
aged to find the average peak speed for each simulation,
Upeak.

um, ux,t , ux : To characterize some of the dynamics in
the compression region, the instantaneous, non-dimensional
magnitude of velocity (|u′|, speed) and x-component of
fluid flow velocity, ux,t , were sampled at each time at one
point in the center of the compression tube, indicated by the
white/black dot labeled 2 in Fig. 1a. For the x-component of
velocity, the instantaneous component of velocity for each
time step ux,t versus t ′ are presented in Fig. 4. These speeds
were then temporally averaged across the entire simulation
to find the average speed or magnitude of velocity (um) and
average x-component of velocity (ux ) for each simulation.
These speeds are presented in Fig. 5d–f as black squares (um)
and triangles (ux ) and in Fig. 8b as black and gray squares
(um) and black and gray triangles (ux ).

pin, pout, Δp: Non-dimensional pressure, p′, at each time
step in the simulation was spatially averaged across two
cross sections of the racetrack near the compression region:
the inflow region (Fig. 1a, white box 3) and outflow region
(Fig. 1a, white box 4). The inflow pressures were subtracted
from the outflow pressures to find the pressure difference
at each time step and averaged across the entire simulation
to find the average inflow pressure pin, the average outflow
pressure pout, and average pressure difference (Δp) for each
simulation. These pressures are presented in Fig. 7a–d as con-
nected circles (pin), connected diamonds (pout), and dotted
triangles (Δp).

For the no-racetrack design, the average volume flow
rate vavg was calculated using MATLAB. The average x-
component of velocity across the opening of the heart tube
was calculated and then divided by the diameter of the open-
ing at that time point. These values were then temporally
averaged across simulation time to find vavg.

3 Results

Results discussed below are for the racetrack design unless
otherwise noted.

3.1 Womersley number

Flow speeds in the racetrack Umax,t are graphed against
simulation time for several Wo in Fig. 3a. Note that the
Wo was varied by changing the viscosity of the fluid rather
than the pulse frequency and/or the wave speed. The dashed
line shows the constant wave speed for these simulations.
Fluid flow speeds exhibit pulsatile behavior for Wo of 5
and below. Unsteady behavior is observed for Wo = 50,
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Fig. 4 ux,t versus dimensionless time, t ′, for a point at the center of
the compression tube. Positive speed indicates movement of fluid in
the counterclockwise direction around the racetrack. Dotted lines indi-
cate default values for each parameter. Horizontal dotted-dashed line
indicates the non-dimensional speed of the compression wave, c, for a
and b. a Womersley number, b compression ratio, c non-dimensional
compression wave speed, c

likely due to inertial effects and the formation of strong vor-
tices in the tube. In all cases, the maximum dimensionless
flow speed is greater than the wave speed for part of the
cycle.

Uavg, Umax, and Upeak are graphed against Womers-
ley number (Wo) in Fig. 5a. Nonlinear relationships exist
between each of the dimensionless flow speed metrics and
Wo, where theWowas varied by changing the viscosity.Uavg

tend to steadily increase with increasing Wo, while average
peak flow speeds are greatest around Wo = 1 and 50. Upeak

are greater than the speed of the compression wave, c, for all
Wo and show variability with simulation time for values of
Wo > 10 (Fig. 3a).
Flow speeds within the compression tube um and ux are plot-
ted against Wo in Fig. 5d. ux,t is plotted against time for
several simulations in Fig. 4a. The flow reversals (indicated
by a change in sign) show a non-parabolic flow profile in
the pumping section for Wo ≥ 10. While um at this point
increases with increasingWo, the temporally averaged value
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Fig. 5 a–c Non-dimensional fluid speeds within the racetrack versus
parameter for Uavg (black circles), Umax (white diamonds), and Upeak
(white, inverted triangles) across a section of tube (see text for details of
calculations). Positive speed indicates movement of fluid in the coun-
terclockwise direction around the racetrack. d–f: um (black squares)

and ux (white triangles) versus parameter for a point at the center of
the compression tube. Non-dimensional compression wave speed, c, is
noted on each plot as a dotted-dashed line. a, d Womersley number,
b, e compression ratio, c, f non-dimensional speed of the compression
wave, c

of ux decreases and becomes negative for Wo > 1. This
indicates that flow is moving on average in clockwise direc-
tion, or opposite the direction of the propagating compression
wave. This phenomenon is due to significant backflow that
occurs when the tube rapidly expands behind the compres-
sion wave.
Pressure For values Wo < 2, there are large differences in
pressure (Δp). Since Wo is varied by changing viscosity, the
Wo < 1 cases are viscous dominated, and this results in a
high resistance of the fluid to move through the tube. Δp are
greatest atWo = 0.3, with p′ > 4000 (Fig. 7a). Of note is the
case where Wo = 0.1 and the pressure difference decreases
relative to Wo = 0.3. Note in Fig. 5a that the flow speed at
this Wo drops to almost zero. For a compression ratio of 0.8,
the peristaltic pump is not able to drive highly viscous flow
around the racetrack, and the pressure difference between the
inflow and outflow tracts drops. For values W ≥ 2, pressure
differences between the two regions approach zero as the
resistance to flow decreases with decreasing viscosity. Non-
dimensional pressure p′ is reported versus time in Fig. 6a for
varying values of Wo.

3.2 Tube occlusion

Flow speeds in the racetrack Umax,t is graphed against
dimensionless time for several compression ratios in Fig. 3b.
Note that Umax,t does not exceed c for compression ratios
set to 0.6 and less. For large compression ratios of 0.8–0.9,
Umax,t reaches speeds of nearly double the value of c. In all
cases considered, Umax,t is positive, and the flow moves in
the counterclockwise direction at the top of the racetrack.

Uavg, Umax, and Upeak is graphed against compression
ratio in Fig. 5b. Eachmetric of the flow speed has a nonlinear,
increasing relationship with increasing compression ratios.
For compression ratios under 0.7, corresponding to 70% tube
occlusion,Upeak does not exceed cwhich is consistent with a
low-amplitude approximation of peristalsis (Fig. 3b). How-
ever, for values 0.7 and above, the average peak flow speeds
exceed c.
Flow speeds within the compression tube Figure 4b reports
ux,t measured at the center of the compression region as
a function of dimensionless time for different compression
ratios. Note that in all cases, significant backflow occurs as
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the tube rapidly expands behind the compressionwave.Back-
flow is minimized at the highest compression ration of 0.9.
Figure 5e reports the temporally averaged speeds, um and ux ,
versus compression ratio. Higher compression ratios lead to
higher forward flow speeds, as evidenced by the increase
in ux relative to overall magnitude in Fig. 5b. ux exceeds
the speed of the compression wave for the highest values
(≥ 0.9). um starts to exceed c as low as compression ratio =
0.6 (Fig. 4b).
Pressure Pressure differences between the inflow region
(Fig. 1a at 3) and outflow region (Fig. 1a at 4) are small for
lower compression ratios and grow nonlinearly with increas-
ing tube occlusion (Fig. 7b). The higher pressure differences
correspond to the larger flow speeds generated by the higher
compression ratios. Non-dimensional pressure p′ is reported
versus time in Fig. 6b for varying values of compression ratio.

3.3 Speed of compression wave, c

Flow speeds in the racetrack In this set of simulations, the
pulsing frequency is held constant and c is varied. Umax,t is

graphed against dimensionless time for several wave speeds
in Fig. 3c. Note that changing c while holding the frequency
constant has the effect of changing thewave form (see Fig. 2).
The base case wave speed c = 3.0 was halved and doubled.
As expected, lower values of c resulted in slow flows and
higher values of c resulted in faster flows.

Figure 5c presents Uavg, Umax, and Upeak versus c for
the upper section of the racetrack. All three speeds have a
nonlinear and increasing relationship with increasing wave
speed, with average peak speeds being consistently higher
than c. There is a small dip in fluid speeds around value
c = 3.33 which is consistent across all three measures of
fluid speed.
Flow speeds within the compression tube Figure 4c reports
ux,t as a function of dimensionless time for different wave
speeds. Note that there is significant backflow for the higher
wave speed cases. In Fig. 5f, the temporally averaged speeds
um and ux measured at a point within the compression tube
are plotted against the wave speed. All three speed metrics
have a similar nonlinear relationship with c. Speeds increase
overall with increasing c.
Pressure Pressures across both the inflow region (Fig. 1a at
3) and outflow region (Fig. 1a at 4) shares a nonlinear rela-
tionship with c, similar to the relationship seen between fluid
flow speed and wave speed (Fig. 7c). Generally, increasing
wave speed also increases the pressure difference between
the two points. Note that the pressure difference dips around
c = 3.33, just asUavg,Umax, andUpeak also drop at this value
of c. Non-dimensional pressure p′ is reported versus time in
Fig. 6c for varying values of c.

3.4 Compression wave frequency

Here,we consider the following two cases: (1) Frequency and
wave speed are varied proportionally such that the waveform
along the compression tube is unchanged, and (2) frequency
is varied while the wave speed is held constant. This allows
us to consider the cases when wave speed is coupled to and
decoupled from changes in the pulse frequency.

3.4.1 Variable wave speed

Flow speed Figure 8a showsUavg,Umax, andUpeak as a func-
tion of the pulse frequency, f ∗, for the racetrack design. The
gray data connected by lines show the case when the com-
pressionwave speed is allowed to change proportionallywith
f ∗. In this case, all measures of speed show a linear relation-
ships with f ∗. The dashed line shows the wave speed, and
Umax is close to the wave speed across all frequencies con-
sidered.Upeak also varies linearly with f ∗ and is higher than
the wave speed. Figure. 8b shows um and ux measured in the
compression region as a function of f ∗. The gray data show
the cases where c varies with f ∗, and a clear linear rela-
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Fig. 8 Non-dimensional fluid speed versus non-dimensional compres-
sion wave frequency, f , for two cases: simulations with constant
compression wave speed, c (black items, no lines), or variable c (gray,
solid line). Positive speed indicates movement of fluid in the coun-
terclockwise direction around the racetrack. a Uavg (circles), Umax

(diamonds), andUpeak (inverted triangles)measured in the upper tube of
the racetrack. (See text for description of calculations.) b um (squares)
and ux (triangles) measured at a point within the compression region
of the tube

tionship is observed. The linear relationships between flow
speeds (Uavg andUpeak) and f for flows generated in the no-
racetrack model as well (Fig 9a). Additionally,Upeak exceed
c for the no-racetrack design.

Volume flow rate For the no-racetrack design, the volume
flow rate, vavg, has a linear relationship with compres-
sion frequency, f , when c increases with increasing f
(Fig. 9c).
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Fig. 9 Top row Non-dimensional fluid speed versus non-dimensional
compression wave frequency, f , for two cases: with a connected race-
track (black items) and with no circulatory system or rigid ends (white
items). Positive speed indicates movement of fluid in the counterclock-
wise direction around the racetrack. Uavg (circles) and Upeak (inverted
triangles) measured in the upper tube of the racetrack (racetrack) and

the mouth of the contracting region (no-racetrack). Dotted lines report
the speed of the compression wave, c. a Simulations with variable c. b
Simulations with constant c. Bottom rowVolume flow rate, vavg, versus
compression wave frequency, f , for c simulations with variable c, and
d simulations with constant c

Pressure Figure 7d shows the relationship between pres-
sure, p′, and compression frequency, f , for cases when
the wave speed, c, changes proportionally with frequency
(black items). p′

in shows a nonlinear but regular increase
with increasing f , and pout shows a nonlinear decrease with
increasing frequency. The pressure difference Δp between
the inflow and outflow tract increases in a regular and non-
linear way with f .

3.4.2 Constant wave speed

Flow speeds in the racetrackWhen compression wave speed
is held constant while the pumping frequency increases, all
measures of fluid speed have markedly nonlinear relation-
ships with compression frequency. Note that this has the
effect of changing thewave form along the length of the com-
pression region. Within the upper section of the racetrack,
Uavg, Umax, and Upeak show an increasing, oscillatory pat-
tern with distinct peaks near f = 0.8, 1.6, and 2.5 (Fig. 8a).
This pattern is more pronounced for theUpeak.Upeak greatly

exceed the compression wave speed, c. Upeak is triple the
wave speed near f = 2.5.
Flow speeds within the compression tube for the racetrack
design um and ux also share a nonlinear relationship with
the contraction frequency, f . This graph is characterized by
oscillations, but peak flow speeds within the compression
tube do not correspond to the pattern seen within the race-
track (Fig. 8b).
Flow speeds for the no-racetrack design Uavg and Upeak

show a similar nonlinear relationship with f when c is held
constant (the racetrack and no-racetrack designs are com-
pared in Fig. 9b). Peaks in both speeds are seen around
f = 0.8, 1.6, and 2.5. Values ofUpeak are consistently above
c.
Volume flow rate For the no-racetrack design, the volume
flow rate, vavg, has a nonlinear relationship with compression
frequency, f , when c is held at 3.0 (Fig. 9d).
PressureFigure 7d shows the relationship between pressures,
p′
in, p

′
out and Δp, and frequency, f , for constant wave speed

(gray items). Pressures show a nonlinear relationship with
frequency, as in the case of fluid flow speed.

123



L. Waldrop, L. Miller

4 Discussion

4.1 Evaluating large-amplitude, short-wave peristaltic
pumps against the technical definition of peristalsis

Männer et al. (2010) summarizes six qualities of tech-
nical peristaltic pumps often used to evaluate biological
pumps based on small-amplitude and/or long-wave approx-
imation of peristalsis. Our direct, numerical simulation of
peristalsis adheres to a simpler, more inclusive definition
of peristalsis: having a non-stationary compression wave
that travels unidirectionally down a tube with no struc-
turally fixed direction of flow. The geometry considered in
this paper violates the long-wave approximation (the full
wavelength is four times the diameter for the base case)
and the small-amplitude approximation (compressions up
to 95% are considered). Furthermore, the Wo was var-
ied from 0.1 to 50, spanning cases where both inertia and
viscosity are significant. Note that this model was not devel-
oped to capture the specific dynamics of any particular
tubular heart but rather to consider highly nonlinear dynam-
ics.

Our models incorporates the most basic features of peri-
stalsis and produces flow characteristics that run counter
to those listed in the technical definition. Our model gen-
erates pulsatile fluid flow for Wo of 5 and less at high
compression ratios (Fig. 3a, b); flow speeds that show non-
linear relationships when either the compression wave speed
or the pulsing frequency is fixed (Fig. 5c); and peak flow
speeds that exceed compression wave speeds in most cases
(Figs. 3a–c, 5a–c, 9a–b). These results are similar to the
results of other valveless, peristaltic models with cardiac
cushions (Taber et al. 2007). When flow speeds are mea-
sured in the compression section, significant backflow can
be observed.

Additionally, the model shows that flow speeds can have
either a linear or nonlinear relationship with compression
frequency, depending on how the speed of the compression
wave is handled. A linear relationship between flow speed
and compression frequency results when the speed of the
compression wave increases linearly with compression fre-
quency (Figs. 8a, 9a, c), demonstrating that flow is being
driven by peristalsis and not another pumping mechanism.
In this case, the wave form along the tube is the same, and the
pump just operates faster. This is a feature of most mechan-
ical pumps that does not necessarily translate to biological
pumps. In the case of a constant wave speed, the relationship
is strikingly nonlinear between fluid speed and compres-
sion frequency (Figs. 8a, 9b, d). For these cases, the wave
form along the compression region changes (demonstrated
in Fig. 2). This scenario corresponds to situations when the
pacemaker activity is altered while the propagation speed of
an action potential is constant.

4.2 Implications of large-amplitude, short-wave
peristaltic pumps in biological fluid transport
systems

Since many of the principles of the technical definition
derived from mechanical pumps are violated by our simple
model,we suggest that the technical definition of peristalsis is
inappropriate for evaluating the pumping mechanism of bio-
logical pumps. While the definition appropriately describes
some peristaltic pumps, many biological pumps may fail
simply because they violate the low-amplitude, long-wave
approximation used to establish the criteria in the techni-
cal definition. Simply decoupling compression wave speed
and frequency can also cause a pump to violate the techni-
cal definition even though it retains the essential features of
peristalsis (travelingwave of compression and no structurally
fixed flow direction) that mathematicians and biologists use.

There are many biological pumps that fail criteria in the
technical definition of peristalsis but fit the more inclusive
definition. In tunicate hearts, heart beat frequency increases
with increasing ambient temperature but the conduction
velocity that passes down the heart tube remains constant
(Kriebal 1967). In mosquito hearts, hemolymph flow is not
continuous and flow speed is greater than compression wave
speed (Glenn et al. 2010). For many tubular pumps, the con-
traction wave may nearly or even completely occlude the
tube. Other tubular pumps, such as the embryonic hearts of
tunicates, are not much longer than they are wide. Tubes with
diameters on the order of their length violate the long-wave
assumption.

4.3 Significance of the pumping mechanism to the
embryonic heart

In the past 8years, both peristalsis and dynamic suction
pumping have been proposed as the mechanism by which
the early embryonic heart tube drives the flow of blood.
The important point of this difference for the case of under-
standing the evolution and development of the heart is the
distinction between which regions of the heart actively con-
tract. If tubular hearts pump using dynamic suction pumping,
then only one region of the heart actively contracts, and the
waves observed are passive and elastic. On the other hand, if
the pumping mechanism is peristalsis, then the heart actively
contracts along its entire length. This distinction has con-
sequences for how the cardiac conduction system and the
musculature develops.

In Forouhar et al. (2006) work on embryonic zebrafish
hearts, they present observations that demonstrate this valve-
less, tubular heart violates the technical definition of peristal-
sis. As we have shown with this simple model of flow being
driven by peristalsis, fluid flow can mimic each observation
made on the embryonic heart, including pulsatile flow both
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within the compressing tube (Fig. 4a–c) and far away from the
compression tube (Fig. 3a–c); peak flow speeds that exceed
compression wave speeds (Fig. 5a–f, 9a, b); and a nonlinear
relationship between fluid flow and compression frequency
that is very similar to the relationship observed in their study
(Fig. 8a, 9b). The results of our study suggest that peristalsis
cannot be ruled out as the pumping mechanism of the verte-
brate embryonic heart and that the exact pumpingmechanism
requires further study since both mechanisms can result in
similar features for cases with nearly complete occlusion and
diameter to length ratios on the order of 1:4.

The only observation that supports rejection of peristal-
sis as the pumping mechanism for the zebrafish heart is that
no active contraction down the length of tube was observed
(Forouhar et al. 2006). However, this observation has been
disputed by others (Männer et al. 2010; Maes et al. 2011;
Goenezen et al. 2012) and was not supported by direct mea-
surement of muscle activation or morphological features that
would suggest electrical activation of cardiac muscle was
limited to one area of the heart. Many studies show that the
architecture required to propagate such a signal are present
early during heart development and that conduction through-
out the myocardium is itself a critical component of normal
cardiogenesis (Paff 1938; Paff et al. 1964; Rottbauer et al.
2001; Chi et al. 2010).
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