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Synopsis This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for

Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative

Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active

learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that

active learning can improve students’ outcomes in Science, Technology, Engineering and Math Education disciplines. We

then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe

some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the

undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning

and technology into their classrooms.

Introduction

Why active learning?

Over the past 15 years, many studies on science ed-

ucation have demonstrated the success of active

learning when compared with passive, lecture-based

learning at the college level in science and mathemat-

ics (e.g., Springer et al. 1997; Hake 1998;

Handelsman et al. 2004; Smith et al. 2009, 2011;

Epstein 2013; Code et al. 2014; Ellis et al. 2014;

Freeman et al. 2014; Linton et al. 2014a).

Interactive teaching styles, focusing on conceptual

learning, hands-on activities, and discussion with

the opportunity for immediate feedback have been

shown to be significantly more effective than tradi-

tional lecture-based courses using a variety of metrics

(e.g., Springer et al. 1997; Handelsman et al. 2004;

Ellis et al. 2014; Freeman et al. 2014). Specifically,

problem-based programs have been successful in im-

proving conceptual learning, problem-solving ability,

retention of content, and students’ satisfaction over

traditional passive-learning formats, such as lectures,

in a wide variety of both science major and non-

major courses (Hmelo-Silver 2004; Anderson et al.

2011; Welsh 2012; Ellis et al. 2014; Linton et al.

2014a, 2014b). Furthermore, several studies have

shown that small-group, inquiry-based instruction
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is particularly effective for populations of women

and minority students (Cooper and Robinson 1998;

Beichner 2008; Haak et al. 2011; Freeman et al.

2011).

As a result of this research, several national orga-

nizations have called for a shift in the way under-

graduates are educated in biology and mathematics

from traditional lectures to student-centered, active-

learning strategies (APBI Taskforce 2008; AAAS

2009; AAMC–HHMI Committee 2009; National

Research Council 2003; Steen 2005a, 2005b; Jungck

and Marsteller 2010; Labov et al. 2010; Jungck and

Schaefer 2011; Epstein 2013; Ledder et al. 2013;

Herreid et al. 2014; Hodgen et al. 2014; Anguelov

and Markov 2014). These reports note that active-

learning pedagogy represents the best way to teach

fundamental concepts and ways of thinking in biol-

ogy and mathematics that will help to make

American university students successful in research,

industry, and medicine.

Why use active learning in quantitative biology?

Quantitative biology applies quantitative techniques

to advance understanding of biological problems.

Mathematical modeling is a key tool in understand-

ing these problems, in which descriptive or predictive

models are described that focus on capturing the

interactions of the driving processes and influences

of a biological system, rather than on capturing pat-

terns in the data gathered from observing or mea-

suring the system. Although quantitative biology

includes statistical and informatics-based approaches,

mathematical modeling is a cornerstone of many

courses in quantitative biology.

Compared with traditional mathematics courses in

which students must master established concepts and

problem-solving techniques, courses in quantitative

biology may be more open-ended. Creativity and

consideration of multiple approaches are hallmarks

of higher-level mathematics, but many undergradu-

ates have minimal exposure to mathematics in which

there is more than one ‘‘right’’ answer. In courses

that teach quantitative biology through the develop-

ment of mathematical models, students are chal-

lenged to explore problems with many possible

solutions and to develop evaluative skills through

rigorous comparison of mathematical results to real

systems. In addition, mathematical modeling lends

itself well to inquiry-based, collaborative-learning ac-

tivities that are inclusive of students with a range of

strengths and academic backgrounds. Thus, biologi-

cally-motivated, model-building activities are a useful

approach to the implementation of active learning

techniques.

Purpose of this article

Implementing active learning strategies in the class-

room is not always straightforward, and implemen-

tation requires planning to be successful. The term

‘‘active learning’’ can refer to instructional methods

ranging from clicker systems to collaborative, team-

based learning, to integrating undergraduate research

experiences into a course. Instructors should estab-

lish well-defined student learning outcomes and care-

fully assess the effectiveness of these strategies (AAAS

2009). Without careful consideration of student

learning outcomes and thoughtful implementation,

active learning can result in minimal to no improve-

ment in learning and retention by students (Andrews

et al. 2011).

The major goals of this article are: (1) to intro-

duce faculty to some recent initiatives and programs

for developing active learning within quantitative

biology; (2) to introduce faculty who want to incor-

porate active-learning strategies in their instruction

to some of the resources needed to do so effectively;

and (3) to identify a few areas that the authors feel

could benefit from continued development within

quantitative biology.

Initiatives in quantitative biology

Quantitative biology can be roughly defined as any

area of biology that requires significant connections

to mathematics, computer science, data science,

physical sciences, and/or statistics. Interest in quan-

titative biology has been growing, reflected by an

increase in specialized programs and courses at

both the undergraduate and graduate levels (Olena

2014). This overview describes the range of

approaches taken in quantitative biology education

and the challenges associated with cross-training stu-

dents in historically disparate fields. Our emphasis is

on programs that are tied to mathematical concepts

and skills rather than to those with mostly a com-

putational or informatics emphasis.

Undergraduate and graduate programs

The Society for Mathematical Biology maintains a

list of degree programs in Mathematical Biology

that currently includes 14 major programs and 3

minor programs at the undergraduate level and

over 35 programs at the graduate level at universities

in the United States, as well as in Belgium, Canada,

and the United Kingdom (Society of Mathematical

Biology 2015). This list focuses on programs in
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mathematical biology and does not include the range

of programs in computational biology and biological

informatics that have also been proliferating rapidly

over the past two decades. Since quantitative biology

covers a broad collection of fields, challenges inher-

ent in designing these programs echo the challenges

of the quantitative biology classroom. How do we

tailor a program to encompass a student population

with diverse backgrounds and interests? How do we

provide adequate content in both mathematics and

biology? How do we fit all of this material into a

limited time frame or sequence of courses? Finally,

how do we link these formal educational experiences

with students’ experiences in the laboratory or field,

particularly in an environment of expanding oppor-

tunities for undergraduate research?

Existing graduate programs have addressed these

questions through an array of approaches.

(Information on specific programs is available on

the Society for Mathematical Biology education

column, SMB survey.) Admissions requirements

range from evidence of interest in quantitative and

biological fields to a preference for those who had

pursued double majors as undergraduates. Some

programs require coursework in both quantitative

courses and biology courses, while others use co-ad-

vising from other departments, rotations in experi-

mental laboratories, and/or targeted interdisciplinary

coursework to address these needs. A specific

challenge in designing course requirements for

these programs is that different areas of biology

may require different quantitative skills. In addition,

faculty from different primary departments and

disciplines may have varying expectations regarding

the content and format of programs. To address

these issues, many programs maintain flexibility

in their requirements to individualize programs

to a student’s research interests and future career

goals.

Although interdisciplinary training provides novel

opportunities for graduates working in industry, na-

tional laboratories, research institutes, and major

medical centers, opportunities within academia may

be more limited. Indeed, interdisciplinary programs

have observed significant numbers of their graduates

working outside academia (Society of Mathematical

Biology 2015), and challenges with the recruitment

and hiring of mathematical biologists in mathematics

departments have been noted (Reed 2004).

Specialized courses in quantitative biology

In addition to institutions with degree programs in

quantitative biology, many institutions offer

specialized courses in this area. Typically, these

courses are targeted at either biology or mathematics

students. For example, students planning to enter

careers in the health sciences (see also Section 5.3)

can take an entry-level course, such as calculus, with

a biological slant (see Ledder 2008; Neuhauser 2010;

Adler 2012) or a more broadly based course that

includes discrete methods as well as calculus

(Bodine et al. 2014). Alternatively, a traditional cal-

culus course may be replaced by a course in math-

ematical modeling that may be more immediately

relevant to students in the life sciences (Eager et al.

2014). Upper-division courses focused on particular

biological fields with strong quantitative connections,

such as population ecology (Hastings 1996), field bi-

ology (Kokko 2007), and epidemiology (Keeling and

Rohani 2007), represent another option that is

regularly available.

Interestingly, some quantitative biology courses

have been very successful in teaching and exploring

mathematical biology at a high level through care-

fully selected teams of students with complementary

backgrounds and skills (Karsai et al. 2011; Full et al.

2015). By working in groups that have been inten-

tionally designed in this way, students are able to

hone collaborative skills, an integral part of an inter-

disciplinary education, while tackling high-level

problems in quantitative biology. Such group proj-

ects may be a component of upper-division model-

ing courses as well. Future work is needed to

establish the feasibility of broader dissemination of

courses that are completely group-project based.

Non-majors courses

In addition to teaching quantitative biology to math-

ematics, statistics, biology, or other Science,

Technology, Engineering and Math Education

(STEM) majors, there have been recent efforts to

teach such topics to non-majors. For example,

first-year seminars have grown in popularity since

the turn of the century as a mechanism to improve

academic achievement, retention, and student bond-

ing and collaboration (Hyers and Joslin 1998; Tinto

1999; Starke et al. 2001). Most of these seminars are

open to all undergraduates and have few, if any,

prerequisites. Although there are some resources

available for teaching courses to non-majors

(Jungck 2012a; Jungck and Roy 2014), materials in

quantitative biology for first-year seminars and other

courses for non-majors are in great need of develop-

ment since many available texts assume a working

knowledge of calculus or beyond.
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Mathematical modeling in biology

Mathematical modeling is an integral component of

quantitative biology. Although the entire process of

developing and testing a mathematical model is in-

herently active (see Fig. 1), the process often is pre-

sented to students in a relatively passive format.

Morris (1967) noted that many texts focus on exam-

ples of models that have already been developed, and

the descriptions of such models usually involve jus-

tification rather than inquiry. In other words, the

final model ‘‘works,’’ and the text explains why it

works. In such a structured approach, students

often miss the key discovery aspects of model for-

mulation and the evaluative aspects of comparing

model solutions with reality. By changing the way

students interact with modeling, we can provide les-

sons that engage content, provide realistic experi-

ences, and develop distinctive skills (Jungck 2012b).

A large number of the standard texts used at

both the graduate and undergraduate level in math-

ematical biology are designed to expose readers to

models, not to help them develop their modeling

capabilities. Teaching about models is not the same

as teaching about modeling (SIAM–NSF Working

Group 2012).

Active learning through model building

The formulation of a mathematical model requires

understanding of both the biology of the problem

and the modeling approach being implemented, and

guiding students through this process can be challeng-

ing (Niss 2012). Galbraith (1989) summarized the

following three approaches to teaching mathematical

modeling:

� Generalized applications approach: The instructor

introduces the model and the students manipulate

it under controlled conditions.

� Structured modeling approach: The students are

exposed to all stages of the modeling process,

but the instructor exerts considerable control

over the mathematical model that is to be used.

� Open modeling approach: All stages of the model-

ing process are completed with limited assistance

from the instructor. Students study a problem at

the level of mathematics they are comfortable

using.

Each of these approaches helps students to develop

distinct skills, and instructors can scaffold these

approaches to facilitate the development of mathe-

matically mature modeling skills. The generalized

applications approach may provide a useful format

to introduce students to modeling techniques and

canonical models in mathematical biology. The

structured modeling approach allows students to de-

velop model-building skills in an environment that

maximizes successful learning outcomes. Finally, the

open modeling approach provides students with re-

alistic model-building experiences and encourages

creative solving of problems.

Alternatively, the structured modeling approach

can be applied on a case-by-case basis throughout

the model-building exercise, depending upon the

progress of each group. Galbraith (1989) outlined

three types of intervention that can be used:

� Subtle intervention: The instructor subtly suggests

which model to use.

� Open intervention: After the students have written

down their own models, the instructor then pre-

sents the model that is commonly used.

� Delayed intervention: The instructor allows the

class to complete the modeling process on their

own, and then presents the model commonly

used.

By maintaining awareness of the types of interven-

tion appropriate for a given situation, the instructor

can tailor students’ interactions to maximize expo-

sure to realistic model building while ensuring a

baseline level of progress.

How training in model-building benefits students

Courses with an emphasis on model building en-

hance students’ performance in quantitative thinking,

and they also help to develop other skills. Since

Fig. 1 Diagram showing the iterative process of mathematical

modeling. Many courses in mathematical modeling and

mathematical biology focus only on the bottom red part of

the diagram.

4 L. D. Waldrop et al.

 by guest on A
ugust 12, 2015

http://icb.oxfordjournals.org/
D

ow
nloaded from

 

http://icb.oxfordjournals.org/


model building requires a diverse set of skills, con-

struction of original mathematical models for new

biological problems challenges all students at all

levels. Mathematical modeling tends to level the

mathematical playing field: every student from the

upper level mathematics major to the pre-medical

student with one semester of Calculus can make sub-

stantial contributions to modeling projects. Due to

the highly interdisciplinary nature of model-building

in quantitative biology, students both in mathematics

and in biology must often leave their disciplinary

comfort zones to work across disciplines. This exer-

cise poses additional challenges, and provides specific

educational benefits, to each subset of students.

Students in mathematics

Students in mathematics are exposed to mathemati-

cal models in many classes, but their experiences of

true model building may be limited. Traditional

mathematics classes are typically focused on solving

given equations. In more applied classes, there may

be some discussion on formulating problems and on

interpreting solutions. However, modeling in these

classes often is presented as an established endpoint

(e.g., the simple harmonic oscillator or the wave

equation) rather than an open-ended problem.

Therefore, providing opportunities for students to

grapple with the formulation and assessment of orig-

inal models in quantitative biology teaches skills that

may not be addressed in other parts of the under-

graduate mathematics curriculum.

Furthermore, the contrasts between the disciplines

of mathematics and biology encourage learning. In

mathematics, there is an emphasis on the discovery

of underlying truths. By contrast, biology involves

unavoidable uncertainty, and students quickly learn

to question results. Such questioning is a key precept

of biology, and the exposure to hypothesis-driven

inquiry is vital for mathematics students.

Mathematicians may be unaccustomed to presenting

their work in terms of questions or hypotheses, and

this may be a strong disadvantage for students in

mathematics who are crossing disciplinary bound-

aries or interacting with researchers in other

scientific fields through collaborations or cross-

disciplinary competitions for grants or fellowships.

Course work that teaches students to frame their ef-

forts in terms of hypotheses may also benefit students

in fields such as computer science and theoretical

statistics.

Model building also provides mathematics stu-

dents with more experience working on real-world

applications, working in teams, and communicating

to non-mathematicians. These outcomes are

particularly significant when one considers a recent

survey of industrial managers performed by the

Society for Industrial and Applied Mathematics

(SIAM–NSF Working Group 2012). When asked

about key strengths for industrial mathematicians,

managers noted the following:

� Understanding of and interest in practical applica-

tions (41%).

� Communication skills, interaction with others

(36%).

� Breadth of knowledge of other areas (23%).

Although these are necessary skills for most profes-

sions, developing these skills is particularly valuable

for the many undergraduate math majors who will

join the industrial workforce.

Students in biology

Biology has a reputation for having less quantitative

emphasis than other sciences such as physics and

chemistry (Fawcett and Higginson 2012). However,

most current biological research requires a strong

quantitative background that may not be provided

in a standard undergraduate biology curriculum

(Bialek and Botstein 2004; Gross et al. 2004; Speth

et al. 2010; Feser et al. 2013; Ledder et al. 2013).

Model-building courses provide exposure to mathe-

matics in a format that motivates and engages stu-

dents through relevant biological questions. In

addition to developing quantitative skills, these

courses demonstrate how modeling can be used

both as interpretive and investigative complements

to experiments.

A single course in quantitative biology may not

equip biology students to model their own experi-

mental results, but it can develop skills that enable

students to engage with mathematical modeling at a

more sophisticated level. Students achieve a familiar-

ity with mathematical modeling that will allow them,

as future researchers, to communicate with mathe-

matical collaborators and to critically evaluate math-

ematical modeling approaches by others.

Initiatives/resources in active learning

A large body of resources exists for implementing

active-learning strategies in college-level classrooms.

However, typical instructors may not be familiar

with these resources. In this section, we present sev-

eral types of resources that are useful for instructors

hoping to use these pedagogies for the first time or

build upon previous efforts to enhance students’

learning. These resources, their references, and web-

site addresses are summarized in Table 1.
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Table 1 Summary of initiatives and resources facilitating active learning of quantitative biology

Name Description Website or reference

Initiatives in quantitative biology

Courses for majors Calculus Adler (2012), Neuhauser (2010), Ledder (2008)

Broader mathematics Bodine et al. (2014)

Mathematical modeling Eager et al. (2014), Galbraith (1989)

Upper-level biology Hastings (1996), Kokko (2007), Keeling and Rohani (2007)

Quantitative biology Full et al. (2015)

Courses for non-majors First-year seminars Hyers and Joslin (1998), Starke et al. (2001), Tinto (1999)

Quantitative biology Jungck and Roy (2014), Jungck (2012a)

Resources in active learning

Collaborative learning Books and papers Barkley et al. (2005), Linton et al. (2014a), Full et al. (2015),

Joshi et al. (2007)

SCALEUP Beichner (2008), NCSU (2011)

Technology

On-line software Appsbar http://www.appsbar.com/

MathWork’s Desktop and Web

Deployment tool

http://www.mathworks.com/desktop-web-deployment/

deploying-code-web-application.html

R Studio’s Shiny http://shiny.rstudio.com/

In-class Clickers/Personal Response Systems Gauci et al. (2009), Greer and Heaney (2004),

Smith et al. (2011), Andrews et al. (2011)

Poll Everywhere http://www.polleverywhere.com

Interactive Whiteboards Dhindsa and Shahrizal Emran (2010, 2011)

Social media Twitter Drew (2015); http://twitter.com

Figshare http://figshare.com

Specialized software Numb3r5 Count Project http://bioquest.org/numberscount/

Biological ESTEEM Project http://bioquest.org/esteem/

Netlogo https://ccl.northwestern.edu/netlogo/

PhET Interactive Simulations http://phet.colorado.edu

SimBio http://simbio.com

Cell Collective Helikar (2012, 2015)

Class activities

Hands-on labs BioMathLab Project Kohler et al. (2010), Powell et al. (2012), Haefner (2008)

Textbooks Vogel (1996, 2013), Cornette (2012), Robeva et al. (2008);

Mahaffy (2005), Keller and Thompson (2012a, 2012b, 2012c)

Other activity repositories QUBEShub http://qubeshub.org/

National Center for Case Study Teaching

in Science

https://sciencecases.lib.buffalo.edu/cs/collection/

University of Tennessee, Knoxville http://www.tiem.utk.edu/�gross/bioed/modulelist.html

Workshops NIMBios http://www.nimbios.org/

BioQUEST http://bioquest.org

Symposium on BEER https://about.illinoisstate.edu/biomath/beer

Evaluation and assessment

In-class instructor Peer Review Falchikov and Goldfinch (2000)

RTOP Sawada et al. (2002), Smith et al. (2013)

TDOP Smith et al. (2013), Hora and Ferrare (2013),

http://tdop.wceruw.org/Document/TDOP-Users-Guide.pdf

COPUS Smith et al. (2013)

Course evaluation TPI Wieman and Gilbert (2014)
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Vision and change—a place to start

For instructors interested in integrating active-

learning strategies into their courses, an excellent

place to start is the Vision and Change document,

a report from the American Association for the

Advancement of Science 2009 conference on under-

graduate biology education (AAAS 2009). Vision and

Change includes a list of student-centered learning

resources and a list of assessment instruments and

instructional methods with supporting references.

Vision and Change also identifies resources for inte-

grating multiple forms of assessment for tracking

students’ learning and provides methodology for

using the information gathered to improve the class-

room environment (AAAS 2009).

Resources for developing active-learning techniques

Several books and articles present practical informa-

tion about learning and incorporating active-learning

strategies. Some of these resources present basic

classroom techniques for creating a student-centered

learning environment (Jungck 1991; Asokanthan

1997; Fortus et al. 2004; Barkley et al. 2005;

Handelsman et al. 2007; Tanner 2013; Aikens and

Dolan 2014). Others focus on creating learning en-

vironments for more specific conceptual material,

such as experimental design (Brownell et al. 2013).

Freeman et al. (2011) described how to increase

course structure from low (lecture-based) to high

(active learning), and a follow up study by Eddy

and Hogan (2014) included some specific examples

of how course structure was improved for an intro-

ductory biology class. Other articles provide over-

views on how technology can be used to

incorporate active learning in the classroom. Some

examples include the use of interactive whiteboards

(Dhindsa and Shahrizal Emran 2010, 2011) and per-

sonal-response systems (Greer and Heaney 2004;

Gauci et al. 2009).

Collaborative learning

Collaborative learning environments give students

the opportunity to engage and explore conceptual

material with other students and instructors during

lectures, laboratory-based activities, or projects out-

side of class time. Working in peer groups signifi-

cantly improves students’ comprehension,

independent of the skill of the instructor (Springer

et al. 1997; Linton et al. 2014a, 2014b). Importantly,

significant improvements from collaborative discus-

sion came primarily in higher-level conceptual mate-

rial, application, and synthesis, all of which are

critical skills for students of quantitative biology

(Linton et al. 2014a). Furthermore, collaborative

learning environments more accurately mimic the

environments in which students will eventually con-

tribute as workers in industry or in academia.

Collaborative learning spans a great number of

techniques (summarized by Barkley et al. 2005)

that can easily be incorporated into traditional col-

lege courses. Many techniques can be added to ex-

isting lecture-based courses for in-class discussion

(i.e., turn to your neighbor and discuss) or paired

with in-class technologies such as clickers (see the

‘‘In-class technology’’ section) for rapid feedback.

More traditional laboratory-based courses can also

benefit from techniques that increase students’ en-

gagement with instructors and peers without chang-

ing existing laboratory exercises.

Student groups can be self-formed or instructor

assigned, ephemeral (turn to your neighbor) or

long-lasting (semester-long projects). When students

are allowed to form groups, these groups tend to be

composed of students of the same major, intellectual

background, and interests. Working in such a homo-

geneous group can create more competition than

cooperation where ideas from similar backgrounds

compete for the group’s use. In a mathematical bi-

ology course, instructors can assign group members

with complementary backgrounds and skills to pro-

vide depth in areas than would otherwise be inacces-

sible to a homogenous group of mathematicians or

biologists. This strategy has been used successfully

with multi-disciplinary topics such as comparative

biomechanics (Full et al. 2015) and mathematical

modeling to increase the depth of material covered

and the creativity and sophistication of students’

work, and there are many examples from the

National Science Foundation (NSF) program

Interdisciplinary Training for Undergraduates in

Biological and Mathematical Sciences (UBM) that

paired mathematics and biology undergraduates in

research projects (Joshi et al. 2007).

A well-studied example of a successful project that

implemented an effective interactive learning envi-

ronment in large introductory science courses is

the SCALEUP Project that was piloted at North

Carolina State University (Beichner 2008; NCSU

2011). SCALEUP was designed to replace the

common laboratory/lecture scheme with an inte-

grated collaborative, group-based classroom environ-

ment. In a SCALEUP classroom, students are divided

into groups of 3, and they work through activities

that are interspersed throughout the class. An impor-

tant outcome of this strategy is increased communi-

cation among students and between students and

their instructors. Significant evaluation of the project
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shows that these approaches positively influence stu-

dents’ learning. Specifically, problem-solving skills

are improved, conceptual understanding is enhanced,

students’ attitudes are improved, failure rates are re-

duced, and there is better retention of ‘‘at risk’’ stu-

dents. More than 50 schools across the country have

adapted SCALEUP with the goal of getting students

to work together to investigate interesting problems

and to increase interaction with instructors.

Barkley et al. (2005) is an excellent resource for

implementing all aspects of group work in a college-

level setting. It covers group introductions, strategies

for structuring, and evaluating group work through a

large variety of Collaborative Learning Techniques. It

also covers troubleshooting for common pitfalls such

as problems with inequitable work, cheating, and

students’ resistance.

Technology

Pedagogical approaches that employ technology can

be very useful for incorporating active learning into

different classroom settings. The scalability of many

of these technological tools allows faculty to combine

the individual involvement possible in smaller classes

with the resources of large classes. For example, tools

such as clickers and polls can facilitate participation

by students, even in large lectures, while social media

can facilitate discussions and extend classroom inter-

actions to engage the greater public.

Online software and application tools

Many mathematical models involve computing proj-

ects that may exceed the coding ability of undergrad-

uate students. Creating online applications for

participants is a good way of bridging this gap by

making computational models more accessible both

to students and instructors. Several services aid in

the creation and dissemination of applications.

Appsbar (http://www.appsbar.com/) aids in creating

applications for different platforms. MathWork’s

Desktop and Web Deployment tool (http://www.

mathworks.com/desktop-web-deployment/deploying-

code-web-application.html) creates MATLAB-based

components for use on the Web and does not re-

quire additional software for the end user to operate

the application. Similarly, Shiny is a free, open-

source package in R (R Studio, http://shiny.rstudio.

com/) that allows users to build web-based applica-

tions directly from R.

In-class technology

Clickers are an increasingly popular method of inte-

grating existing lecture-based courses with inquiry-

based strategies (Smith et al. 2011). Clickers are

small devices purchased by universities or students

that allow students to answer multiple-choice ques-

tions posed to them by lecturers. Answers by stu-

dents can be displayed as they come in real time

or as a summary at the end of a set period of

time. Many groups have reported improved learning

when clickers are used in lecture-based introductory

courses, but success tends to be tied heavily to spe-

cific implementations and to the skill of the lecturer

(Andrews et al. 2011).

An alternative to clickers, Poll Everywhere allows

students to use their computers or cell phones to

answer multiple-choice or short-answer questions

during class (http://www.polleverywhere.com/). Poll

Everywhere allows instructors to create, track, and

grade answers to polls. As with clicker-based polls,

these polls may be used to track results in real-time

or to evaluate learning over time. Many universities

have professional accounts with Poll Everywhere,

making it easy for instructors to sign up and get

help with the tools of the website.

Social media

Social media provides a unique way to engage stu-

dents in material and increase the diversity of voices

in the classroom (for more information, see Drew

2015). Services such as Twitter (http://twitter.com),

a micro-blogging platform, help to create, develop,

and publish ideas, as well as promote engagement

with material both from students and the public

(Darling et al. 2013). Other platforms such as

FigShare (http://figshare.com/) provide a way to

make content more accessible to students off-

campus (Drew 2015). Additionally, social media is

an effective way to build equality in the classroom

and to promote increased diversity within science by

providing a greater exposure to a wider array of

voices and experiences (Drew 2015).

Specialized software projects

The Numbers Count Project is dedicated to the use

of quantitative tools for solving biological problems.

This initiative was led by Claudia Neuhauser at the

University of Minnesota and was funded by the

Howard Hughes Medical Institute. The project web-

site, http://bioquest.org/numberscount/, includes a

variety of open resources including biological data,

introductory mathematical modules for biology and

chemistry, statistics modules, resources from

workshops, course materials for calculus and intro-

ductory statistics, and a variety of other resources

and tools.

The Biological ESTEEM project provides Excel

simulations and tools for exploring experimentation
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with mathematical models in the life sciences (http://

bioquest.org/esteem/). This effort is led by Anton

Weisston, John Jungck, and Raina Robeva, and is

supported by NSF and the Mathematical

Association of America. Excel was chosen as the gen-

eral development environment given its availability

and familiarity to most students and faculty.

Currently, the project’s site includes over 40 modules

in subject areas ranging from pharmacokinetics to

island biogeography to models of continuous

growth. New modules are continually being devel-

oped, and all are welcome to contribute their own

materials using the specifications provided on the

project’s site.

The agent-based modeling tool Netlogo (https://

ccl.northwestern.edu/netlogo/) has been specifically

developed for education about models that follow

the actions of individual agents. This approach has

been applied in essentially every area of biology and

the pedagogy for its use in educational settings has

been very well documented. The software is freely

available, as well as implemented through a web-

interface, and can be used with real-time interactions

that allow students to jointly and/or individually

modify components of the model, such as a disease

simulation in which students can control the move-

ments of individuals so as to prevent spread of

infection.

Additionally, several other software projects are

available to aid in teaching biological systems

through manipulating simulations. These include

PhET Interactive Simulations (http://phet.colorado.

edu), SimBio (http://simbio.com), and the Cell

Collective (Helikar 2012, 2015).

Published activities of the class

One barrier to implementing active-learning strate-

gies in college-level courses is the investment of time

required to stray from previously used materials and

develop new activities. However, several resources

exist to lessen this initial commitment of time by

providing a place to share exercises, laboratories, ac-

tivities, and advice on structuring the class. Below,

we highlight a few examples of these resources as

places to start.

Published hands-on quantitative biology laboratories

Experimental laboratories that incorporate mathe-

matical modeling allow students to obtain their

own data for validating the model and to consider

the assumptions that are made during the modeling

process. Exercises that combine experiment and

theory are often used in physics and engineering lab-

oratory courses, but they are less common in the life

sciences. The development of wet laboratories that

connect to biomathematical modeling has the poten-

tial to increase the retention of mathematics by in-

troducing mathematics within the context of

biological systems using discovery-based approaches.

The BioMathLab Project at Utah State University

was aimed at creating quantitative laboratory experi-

ences in the biology curriculum. Several papers that

describe specific laboratory activities that are easy

and inexpensive to implement have been published

as a result of this effort. Kohler et al. (2010) de-

scribed an activity in which students can compare

the movement of brine shrimp to a diffusion

model. The diffusion coefficient is estimated for in-

dividual brine shrimp, and the diffusion equation

with this coefficient is then used to predict the dis-

tribution of many brine shrimp in a petri dish.

Powell et al. (2012) described a set of activities that

encourage students to create their own models of

flow from a leaky bucket. Additional laboratories

may be found on the BioMathLab website (Haefner

2008) and include activities related to osmosis, pho-

tosynthesis, cooling, optimal foraging, enzyme kinet-

ics, and birds’ flight.

In addition to resources for individual laborato-

ries, there are also a variety of textbooks from both

the mathematics and biological sciences that include

hands-on activities and exercises and incorporate

mathematical modeling. Vogel (1996, 2013) include

hands-on activities and demonstrations that illustrate

the importance of mechanical models in biology.

Cornette (2012) developed a ‘‘Wet-Lab’’ Calculus

for the Life Sciences. The associated laboratories in-

clude topics ranging from exponential growth to

Fick’s law to how crickets’ chirp-rates depend on

temperature. Three of the laboratories are now in-

cluded in the National Council of Teachers of

Mathematics website, Illuminations (Keller and

Thompson 2012a, 2012b, 2012c). Virtual laboratories

can also offer students an opportunity for discovery.

Robeva et al. (2008) include simulations and anima-

tions that permit students to interact with biological

processes and to perform virtual dissections. Mahaffy

(2005) includes computer laboratories for simulating

biological processes that complement a calculus

course targeted to biologists.

Quantitative Undergraduate Biology Education and

Synthesis

The Quantitative Undergraduate Biology Education

and Synthesis (QUBES) project is funded by the

NSF, and the QUBES consortium (http://qubeshub.

org/) is an alliance of societies, institutions, and pro-

grams united to strengthen education in quantitative
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biology. The broad goals of the QUBES project are

to (1) coordinate educational efforts in quantitative

biology across disparate communities; (2) support

faculty who wish to implement specific quantitative

concepts and approaches to teaching; (3) increase the

visibility, utility, and adoption of existing quantita-

tive materials; and (4) track faculty’s contributions to

education in quantitative biology, and determine the

features of QUBES that increase the success of im-

plementation. The QUBES website (https://qubeshub.

org/) contains numerous resources related to educa-

tion, research, and collaboration in quantitative bi-

ology, including data, teaching materials, and

models. The website also includes a suite of interac-

tive software tools that can be run directly from a

web browser, allowing easy use of these educational

tools across platforms. Some of the software available

includes NetLogo, R Studio, QtOctave, and pplane.

Other repositories

The National Center for Case Study Teaching in

Science maintains a peer-reviewed collection of case

studies for teaching concepts in science (https://

sciencecases.lib.buffalo.edu/cs/collection/). Case stud-

ies provide an easy, exercise-guided method for in-

corporating active-learning strategies into lecture or

laboratory time. Within the current collection, there

are several case studies focusing on mathematical or

biological concepts, yet very few address topics in

integrated mathematical biology. However, this col-

lection offers an easy way to share existing lesson

plans with other educators.

At the University of Tennessee, Knoxville, a set of

over 50 modules were developed to accompany a

typical introductory biology sequence. Links to

these modules are available at http://www.tiem.utk.

edu/�gross/bioed/modulelist.html. Each module has

a standard format consisting of introducing a biolog-

ical question, defining key variables and their units,

identifying a relevant mathematical model and the

associated data to parameterize it, carrying out

some analysis of the model, and providing further

questions for students to investigate either individu-

ally or in groups.

The University of Maryland has developed a web-

site, MathBench Biology Modules at http://math-

bench.umd.edu, that highlights the mathematical

underpinnings of topics in an introductory biology

course. At least 36 modules cover biological topics

ranging from population dynamics to cellular pro-

cesses as well as more general topics such as mea-

surement and visualization. The modules include

interactive activities, games, and questions. The ac-

tivities also incorporate a wide range of mathematical

topics including statistics, modeling, and difference

equations.

Workshops for sharing resources in quantitative-biology

education

In addition to published and online resources for

quantitative-biology education, workshops provide

important opportunities for dissemination of meth-

ods and materials. They also provide excellent net-

working opportunities for educators. These

workshops are typically hosted at a rotating assort-

ment of colleges, universities, and other institutions

such as the Howard Hughes Medical Institute

(HHMI; https://www.hhmi.org/). Other common

venues include annual society conferences; for exam-

ple, this symposium had a companion session offer-

ing hands-on practice with quantitative-biology

modules in classrooms. HHMI and NSF in particular

have generously supported numerous workshops to

promote and disseminate instructional materials and

pedagogical innovations in quantitative biology.

Workshops are advertised on several websites, in-

cluding those hosted by QUBES (https://qubeshub.

org/), the National Institute for Mathematical and

Biological Synthesis (NIMBioS, http://www.nimbios.

org/), BioQuest (http://bioquest.org), and the

International Symposium on Biomathematics and

Ecology Education and Research (BEER; https://

about.illinoisstate.edu/biomath/beer).

Evaluation and assessment

Evaluation and feedback are important tools for im-

proving course structure, pedagogy, as well as the

performance and effectiveness of instructors. Here,

we discuss metrics that can be used to evaluate the

effectiveness of instructors and courses.

Metrics for in-class evaluation of instructors

We are all accustomed to being ‘‘reviewed’’ by our

students at the end of the semester in an instructor/

course evaluation. At most colleges and universities

there is a great deal of time and effort put into

crafting forms that give meaningful feedback.

However, there are several important limitations to

these common metrics for evaluation. First, typically,

instructors do not receive feedback until after the

conclusion of the course. Although many instructors

choose to conduct midterm evaluations, these are

less standardized across and within institutions.

Second, students are not trained observers in the

classroom. Even more involved approaches, such as

interviews with students, reflect a limited perspective.

To complement evaluations by students, peer ob-

servers may carry out a detailed assessment

10 L. D. Waldrop et al.
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(Falchikov and Goldfinch 2000). Such peer feedback

may be particularly important for instructors who

are experimenting with novel pedagogical

approaches, especially when these approaches push

students out of their traditional comfort zones.

Methods of evaluation by observation can yield

constructive feedback on the classroom environment

that can be used for research, evaluation of pro-

grams, development of faculty, and institutional as-

sessment. A number of protocols for faculty

observers have been developed with the objective of

providing a common language and format in which

to make useful and constructive observations and

allow reliable comparisons across classrooms. The

protocols range in the amount of preparation and

training required of the observer (Brown et al. 2008).

A widely used observation protocol for observa-

tion called Reformed Teaching Observation Protocol

(RTOP) was developed by the Evaluation Facilitation

Group of the Arizona Collaborative for Excellence in

the Preparation of Teachers. To implement this pro-

tocol, trained observers judge measures like engage-

ment of students and effectiveness of instruction,

using statements ranging from ‘‘not at all’’ to ‘‘to a

great extent.’’ Typically, observers participate in

multi-day training, and the protocol has been used

with proven reliability when implemented by trained

observers (Sawada et al. 2002). However, this proto-

col is less reliable when used by un-trained or weakly

trained observers; since judgments may be observer-

dependent, a lack of reliability can be problematic

for comparison across classrooms (Smith et al.

2013).

Another protocol for observation is called the

Teaching Dimensions Observations Protocol

(TDOP), which was specifically designed to address

post-secondary non-laboratory courses (Hora and

Ferrare 2013; Smith et al. 2013). This protocol was

developed as part of the Culture, Cognition, and

Evaluation of a study of STEM Higher Education

Reform funded by the NSF’s Reese Program. The

protocol is comprised of six categories: teaching

methods, pedagogical strategies, cognitive demand,

student–teacher interactions, student-engagement,

and instructional technology. Observers use codes

to describe the classroom environment and make

observations at 2-min intervals over the meeting of

the class. For example, an observer could describe

the teaching method being used as ‘‘SGW’’ meaning

students are working in small groups (Hora and

Ferrare 2013). Hora and Ferrare (2013) gave detailed

instructions on best practices and implementing peer

observations using TDOP in a User’s Manual: http://

tdop.wceruw.org/Document/TDOP-Users-Guide.pdf.

The Classroom Observation Protocol for

Undergraduate STEM (COPUS) is a procedure for

observing faculty to make reliable characterizations

of how faculty and students are spending their

time in STEM classrooms (Smith et al. 2013). It

was developed by science education specialists at

the University of British Columbia to eliminate judg-

ment on the part of the observer as well as to

shorten the amount of training required of the ob-

server. Faculty observers complete a training session

of 1.5 h that prepares them to use the protocol to

document what students and instructors are spend-

ing their time doing in the classroom using specific

codes, similar to the TDOP. For example, an ob-

server could describe what the instructor is doing

using the code ‘‘Lec’’ to denote lecturing, or

‘‘AnQ’’ to denote answering student questions.

However, with COPUS, the number of categories

in which observations are made is reduced to 2:

what are the instructors doing and what are the stu-

dents doing (Smith et al. 2013).

Establishing a culture of peer observation in a de-

partment can facilitate the essential cultural shift

necessary to engage deeply with the pedagogical

issues born from an active classroom (AAAS 2009).

Identifying like-minded peers with whom to discuss

and collaborate on classroom issues will lay the

groundwork for creating a community of support

in which instructors can experiment with active

learning and thoughtfully assess pedagogical innova-

tion (from Panel discussion at SICB).

Metrics for assessing courses

Information and feedback about teaching can also

translate to effective evaluation of the course itself.

Especially in courses that involve active learning or a

research component, the teaching strategies faculty

employ are tied to the content. The Teaching

Practices Inventory (TPI) was designed to give a de-

tailed characterization of the teaching practices used

in STEM courses, and it includes a quantitative mea-

sure of the extent to which research-based teaching

practices are used in a course (Wieman and Gilbert

2014). This inventory differs from the observation

protocols described above in that faculty complete

the inventory on their own (there is no observer)

in about 10 min and with little opportunity for sub-

jective judgment. The TPI captures the teaching

practices that are used over a semester rather than

merely a snap-shot of one or two lessons that are

observed using the aforementioned protocols. The

information contained in the individual inventories

can help improve courses and teaching and help to

increase consistency across a department. Identifying
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the practices that are being used can also help with

future implementation of a research component or

active-learning strategy in other courses.

Identification of needs

Despite the available resources for integrating active-

learning pedagogies into college-level classrooms,

some areas specific to quantitative biology need

more resources to bring these techniques into main-

stream use. Below are several areas in which re-

source-gaps and significant challenges still exist.

Numerical simulations

One common challenge in quantitative biology

courses is to successfully teach biology students

who range from mathematics/biology double

majors to those who have only taken one semester

of calculus several years earlier. Another challenge is

to go beyond the presentation of simple toy models

to the development and analysis of complex real-

world problems.

A solution to both challenges is to teach students

how to use computers to solve mathematical models.

Doing so will allow the students to focus on the

construction, interpretation, and validation of math-

ematical models rather than getting caught up in the

details of finding the solutions by hand. Some cau-

tion should be taken, however, so as to avoid the

misuse of computation. This approach should in-

clude some basic introduction to numerical analysis

and programming as well as exercises to explore

common issues that could produce incorrect results.

For example, students could use Euler’s method to

solve a simple ordinary differential equation with a

known solution. By comparing the size of the time

step chosen to the amount of error in the solution,

they could discover issues of convergence of the nu-

merical solutions.

Students’ attitudes represent another challenge in

teaching the use of computation. Students less famil-

iar with programming tend to resist the use of the

software and writing their own code. Often, they

assume that computational exercises represent addi-

tional work that will be difficult for them to com-

plete. One approach to help them discover that the

computer can be used to make their lives easier is to

introduce a module that requires tedious calculations

and then to write a simple program that does the

calculations automatically. For example, in a module

incorporated into a lesson on Brownian motion, stu-

dents could be asked to calculate a random trajectory

for 30 time-steps. They would then be guided

through a simple program that calculates the

trajectory automatically and graphs the result. They

can experiment with modifying the program to be

extended to more time-steps, multiple random walks,

and a calculation of the average distance from the

starting point. Such an exercise highlights the utility

of the program for accomplishing things faster and

more easily than doing all the work by hand

(Rubinstein and Chor 2014).

Examples of relevance to premeds

Quantitative biology programs typically focus on ed-

ucating future researchers, but they also represent a

distinctive niche for students who are preparing to

enter careers in the health sciences. Although pre-

health majors/tracks are known for their extensive

requirements, many of the science courses that are

part of a standard pre-health curriculum overlap

with science courses that are required in quantitative

biology programs. Furthermore, basic courses in cal-

culus and statistics may also satisfy requirements for

majors both in pre-health and quantitative biology.

By exploiting this overlap, quantitatively-oriented

pre-health students can use a quantitative biology

major to explore their interdisciplinary interests

and distinguish themselves in competitive admissions

to medical school.

Stand-alone quantitative biology courses or short-

course sequences provide another alternative to con-

tribute to the preparation of pre-health students who

lack access to or sufficient interest in quantitative

biology programs. There are educational resources

for statistical analyses of biological data, and there

are many excellent educational materials for mathe-

matical biology that use intuitive and classical exam-

ples from ecology, evolution, and epidemiology.

However, there is a shortage of materials that use

modeling applied to the level of tissues or below to

tackle current problems that are appropriate for

sophomore-level biology students, a critical point

for students considering health-related fields. One

example of a highly quantitatively-focused basic

text at this level is Phillips et al. (2012) that could

readily be used for a basic course in cell biology for

students with stronger quantitative backgrounds.

Tailoring course-topics to address problems with

clear applications to human health emphasizes their

immediate relevance to the career-goals of pre-health

students, thereby encouraging these students’ inter-

ests in mathematical biology and computation. More

generally, the inclusion of quantitative biology

courses in a standard pre-health curriculum can pro-

vide unique training that complements coursework

from other fields. Specifically, the process of
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model-building, particularly in a group setting that

draws on varied disciplinary strengths of group

members, develops skills in individual and team-ori-

ented critical thinking that are necessary for modern

medical practitioners.

Examples using less traditional areas of mathematics

The use of mathematical techniques to address bio-

logical questions has exploded over the past decade,

and biologically-motivated questions are driving the

creation of new mathematics (Cohen 2004; Hunter

2010). Current courses in mathematical modeling

tend to emphasize standard models based on differ-

ential-equations, but much progress has been made

in developing the modeling potential in many other

fields of mathematics. For example, approaches

common in graph theory are used widely in appli-

cations ranging from network theory and the rela-

tionship between structure and function of neuronal

networks to systems biology and questions involving

motifs and pattern-recognition. Topological

approaches have been used to understand DNA

underwinding, overwinding, knotting, and tangling

(Deweese et al. 2008). A short review of algebraic

methods applied to biological problems is given by

Robeva and Laubenbacher (2009), and these authors

make a strong case for incorporating algebra in the

mathematical biology curriculum since the topic is

more familiar than differential equations to most

students and faculty. Several recent textbooks have

included some of these mathematical approaches in

the context of biological applications (Robeva et al.

2008; Segel and Edelstein-Keshet 2013; Robeva 2015),

but additional methods and current examples of

problems relevant to many fields of biology and

mathematics are in need of development for the un-

dergraduate curriculum.

In addition, educational modules that teach math-

ematicians to frame their work in terms of hypoth-

eses are not currently available. It is likely that such

modules would also be very useful for students in

computer science and theoretical statistics. In partic-

ular, mathematicians often are not aware of the large

body of work that supports the use of strong infer-

ence in biological research (Platt 1964). It may be

especially useful to introduce this approach in con-

trast to the modeling approach and in the context of

inductive versus deductive reasoning (Glass and Hall

2008). Other educational modules that may be useful

for mathematicians studying biology include illustra-

tions of biological variation, diversity, experimental

design, and measurement-error.

Conclusions and recommendations

The above survey focuses on the range of approaches

in quantitative biology education as well as present-

ing several key areas the authors have identified as

being ripe for the development of new educational

materials. One important area of need includes the

development of lesson materials and textbooks on

topics in quantitative biology for non-majors, includ-

ing students outside of the STEM fields. Another key

area for the development of curriculum involves the

development of biological examples that require the

use of non-traditional applied mathematics, includ-

ing graph theory, topology, and algebra.

Interestingly, these two areas are not necessarily in-

dependent. Many quantitative and mathematical bi-

ology texts focus on the application of differential

equations, and to some extent linear algebra, to

problems in biology. It can be particularly challeng-

ing to use these techniques in a diverse class where

some students are adept at calculus and linear alge-

bra while others have never seen this material. The

application of methods from topology, graph theory,

and algebra offers a unique opportunity to introduce

new tools to a broad audience while keeping ad-

vanced mathematics students engaged.

As more instructors incorporate active-learning

techniques into their classrooms, there will also be

more opportunities to assess the power of these

approaches. Although there is strong evidence that

active learning assists learning generally, the explicit

interdisciplinary context of quantitative biology has

not been assessed relative to the capability to en-

hance development of mathematical concepts or

the creative aspects of mathematical model-building.

To date, there are few studies addressing the impact

of the connection between mathematical and biolog-

ical disciplines on the educational goals in the re-

spective disciplines. Thus, although the advantages

of integrated approaches resonate with instructors,

there is little non-anecdotal evidence that inclusion

of biological examples motivates undergraduates to

more readily conceptualize and effectively use the

quantitative tools discussed. Going forward, there is

a clear need for collaboration with researchers in

education to determine which of the approaches

and types of courses discussed above are most effec-

tive in enhancing learning in quantitative biology.
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