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Synopsis This article provides a summary of the ideas discussed at the 2015 Annual Meeting of the Society for
Integrative and Comparative Biology society-wide symposium on Leading Students and Faculty to Quantitative
Biology through Active Learning. It also includes a brief review of the recent advancements in incorporating active
learning approaches into quantitative biology classrooms. We begin with an overview of recent literature that shows that
active learning can improve students’ outcomes in Science, Technology, Engineering and Math Education disciplines. We
then discuss how this approach can be particularly useful when teaching topics in quantitative biology. Next, we describe
some of the recent initiatives to develop hands-on activities in quantitative biology at both the graduate and the
undergraduate levels. Throughout the article we provide resources for educators who wish to integrate active learning
and technology into their classrooms.

Introduction o . .
shown to be significantly more effective than tradi-

i ing? . ) . :
Why active learning? tional lecture-based courses using a variety of metrics

Over the past 15 years, many studies on science ed-
ucation have demonstrated the success of active
learning when compared with passive, lecture-based
learning at the college level in science and mathemat-
ics (e.g., Springer et al. 1997; Hake 1998;
Handelsman et al. 2004; Smith et al. 2009, 2011;
Epstein 2013; Code et al. 2014; Ellis et al. 2014;
Freeman et al. 2014; Linton et al. 2014a).
Interactive teaching styles, focusing on conceptual
learning, hands-on activities, and discussion with
the opportunity for immediate feedback have been

(e.g., Springer et al. 1997; Handelsman et al. 2004;
Ellis et al. 2014; Freeman et al. 2014). Specifically,
problem-based programs have been successful in im-
proving conceptual learning, problem-solving ability,
retention of content, and students’ satisfaction over
traditional passive-learning formats, such as lectures,
in a wide variety of both science major and non-
major courses (Hmelo-Silver 2004; Anderson et al.
2011; Welsh 2012; Ellis et al. 2014; Linton et al.
2014a, 2014b). Furthermore, several studies have
shown that small-group, inquiry-based instruction
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is particularly effective for populations of women
and minority students (Cooper and Robinson 1998;
Beichner 2008; Haak et al. 2011; Freeman et al.
2011).

As a result of this research, several national orga-
nizations have called for a shift in the way under-
graduates are educated in biology and mathematics
from traditional lectures to student-centered, active-
learning strategies (APBI Taskforce 2008; AAAS
2009; AAMC-HHMI Committee 2009; National
Research Council 2003; Steen 2005a, 2005b; Jungck
and Marsteller 2010; Labov et al. 2010; Jungck and
Schaefer 2011; Epstein 2013; Ledder et al. 2013;
Herreid et al. 2014; Hodgen et al. 2014; Anguelov
and Markov 2014). These reports note that active-
learning pedagogy represents the best way to teach
fundamental concepts and ways of thinking in biol-
ogy and mathematics that will help to make
American university students successful in research,
industry, and medicine.

Why use active learning in quantitative biology?

Quantitative biology applies quantitative techniques
to advance understanding of biological problems.
Mathematical modeling is a key tool in understand-
ing these problems, in which descriptive or predictive
models are described that focus on capturing the
interactions of the driving processes and influences
of a biological system, rather than on capturing pat-
terns in the data gathered from observing or mea-
suring the system. Although quantitative biology
includes statistical and informatics-based approaches,
mathematical modeling is a cornerstone of many
courses in quantitative biology.

Compared with traditional mathematics courses in
which students must master established concepts and
problem-solving techniques, courses in quantitative
biology may be more open-ended. Creativity and
consideration of multiple approaches are hallmarks
of higher-level mathematics, but many undergradu-
ates have minimal exposure to mathematics in which
there is more than one “right” answer. In courses
that teach quantitative biology through the develop-
ment of mathematical models, students are chal-
lenged to explore problems with many possible
solutions and to develop evaluative skills through
rigorous comparison of mathematical results to real
systems. In addition, mathematical modeling lends
itself well to inquiry-based, collaborative-learning ac-
tivities that are inclusive of students with a range of
strengths and academic backgrounds. Thus, biologi-
cally-motivated, model-building activities are a useful
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approach to the implementation of active learning
techniques.

Purpose of this article

Implementing active learning strategies in the class-
room is not always straightforward, and implemen-
tation requires planning to be successful. The term
“active learning” can refer to instructional methods
ranging from clicker systems to collaborative, team-
based learning, to integrating undergraduate research
experiences into a course. Instructors should estab-
lish well-defined student learning outcomes and care-
fully assess the effectiveness of these strategies (AAAS
2009). Without careful consideration of student
learning outcomes and thoughtful implementation,
active learning can result in minimal to no improve-
ment in learning and retention by students (Andrews
et al. 2011).

The major goals of this article are: (1) to intro-
duce faculty to some recent initiatives and programs
for developing active learning within quantitative
biology; (2) to introduce faculty who want to incor-
porate active-learning strategies in their instruction
to some of the resources needed to do so effectively;
and (3) to identify a few areas that the authors feel
could benefit from continued development within
quantitative biology.

Initiatives in quantitative biology

Quantitative biology can be roughly defined as any
area of biology that requires significant connections
to mathematics, computer science, data science,
physical sciences, and/or statistics. Interest in quan-
titative biology has been growing, reflected by an
increase in specialized programs and courses at
both the undergraduate and graduate levels (Olena
2014). This overview describes the range of
approaches taken in quantitative biology education
and the challenges associated with cross-training stu-
dents in historically disparate fields. Our emphasis is
on programs that are tied to mathematical concepts
and skills rather than to those with mostly a com-
putational or informatics emphasis.

Undergraduate and graduate programs

The Society for Mathematical Biology maintains a
list of degree programs in Mathematical Biology
that currently includes 14 major programs and 3
minor programs at the undergraduate level and
over 35 programs at the graduate level at universities
in the United States, as well as in Belgium, Canada,
and the United Kingdom (Society of Mathematical
Biology 2015). This list focuses on programs in
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mathematical biology and does not include the range
of programs in computational biology and biological
informatics that have also been proliferating rapidly
over the past two decades. Since quantitative biology
covers a broad collection of fields, challenges inher-
ent in designing these programs echo the challenges
of the quantitative biology classroom. How do we
tailor a program to encompass a student population
with diverse backgrounds and interests? How do we
provide adequate content in both mathematics and
biology? How do we fit all of this material into a
limited time frame or sequence of courses? Finally,
how do we link these formal educational experiences
with students’ experiences in the laboratory or field,
particularly in an environment of expanding oppor-
tunities for undergraduate research?

Existing graduate programs have addressed these
questions  through an array of approaches.
(Information on specific programs is available on
the Society for Mathematical Biology education
column, SMB survey.) Admissions requirements
range from evidence of interest in quantitative and
biological fields to a preference for those who had
pursued double majors as undergraduates. Some
programs require coursework in both quantitative
courses and biology courses, while others use co-ad-
vising from other departments, rotations in experi-
mental laboratories, and/or targeted interdisciplinary
coursework to address these needs. A specific
challenge in designing course requirements for
these programs is that different areas of biology
may require different quantitative skills. In addition,
faculty from different primary departments and
disciplines may have varying expectations regarding
the content and format of programs. To address
these issues, many programs maintain flexibility
in their requirements to individualize programs
to a student’s research interests and future career
goals.

Although interdisciplinary training provides novel
opportunities for graduates working in industry, na-
tional laboratories, research institutes, and major
medical centers, opportunities within academia may
be more limited. Indeed, interdisciplinary programs
have observed significant numbers of their graduates
working outside academia (Society of Mathematical
Biology 2015), and challenges with the recruitment
and hiring of mathematical biologists in mathematics
departments have been noted (Reed 2004).

Specialized courses in quantitative biology

In addition to institutions with degree programs in
quantitative  biology, many institutions offer

specialized courses in this area. Typically, these
courses are targeted at either biology or mathematics
students. For example, students planning to enter
careers in the health sciences (see also Section 5.3)
can take an entry-level course, such as calculus, with
a biological slant (see Ledder 2008; Neuhauser 2010;
Adler 2012) or a more broadly based course that
includes discrete methods as well as calculus
(Bodine et al. 2014). Alternatively, a traditional cal-
culus course may be replaced by a course in math-
ematical modeling that may be more immediately
relevant to students in the life sciences (Eager et al.
2014). Upper-division courses focused on particular
biological fields with strong quantitative connections,
such as population ecology (Hastings 1996), field bi-
ology (Kokko 2007), and epidemiology (Keeling and
Rohani 2007), represent another option that is
regularly available.

Interestingly, some quantitative biology courses
have been very successful in teaching and exploring
mathematical biology at a high level through care-
fully selected teams of students with complementary
backgrounds and skills (Karsai et al. 2011; Full et al.
2015). By working in groups that have been inten-
tionally designed in this way, students are able to
hone collaborative skills, an integral part of an inter-
disciplinary education, while tackling high-level
problems in quantitative biology. Such group proj-
ects may be a component of upper-division model-
ing courses as well. Future work is needed to
establish the feasibility of broader dissemination of
courses that are completely group-project based.

Non-majors courses

In addition to teaching quantitative biology to math-
ematics, statistics, biology, or other Science,
Technology, Engineering and Math Education
(STEM) majors, there have been recent efforts to
teach such topics to non-majors. For example,
first-year seminars have grown in popularity since
the turn of the century as a mechanism to improve
academic achievement, retention, and student bond-
ing and collaboration (Hyers and Joslin 1998; Tinto
1999; Starke et al. 2001). Most of these seminars are
open to all undergraduates and have few, if any,
prerequisites. Although there are some resources
available for teaching courses to non-majors
(Jungck 2012a; Jungck and Roy 2014), materials in
quantitative biology for first-year seminars and other
courses for non-majors are in great need of develop-
ment since many available texts assume a working
knowledge of calculus or beyond.
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Fig. 1 Diagram showing the iterative process of mathematical
modeling. Many courses in mathematical modeling and
mathematical biology focus only on the bottom red part of
the diagram.

Mathematical modeling in biology

Mathematical modeling is an integral component of
quantitative biology. Although the entire process of
developing and testing a mathematical model is in-
herently active (see Fig. 1), the process often is pre-
sented to students in a relatively passive format.
Morris (1967) noted that many texts focus on exam-
ples of models that have already been developed, and
the descriptions of such models usually involve jus-
tification rather than inquiry. In other words, the
final model “works,” and the text explains why it
works. In such a structured approach, students
often miss the key discovery aspects of model for-
mulation and the evaluative aspects of comparing
model solutions with reality. By changing the way
students interact with modeling, we can provide les-
sons that engage content, provide realistic experi-
ences, and develop distinctive skills (Jungck 2012b).
A large number of the standard texts used at
both the graduate and undergraduate level in math-
ematical biology are designed to expose readers to
models, not to help them develop their modeling
capabilities. Teaching about models is not the same
as teaching about modeling (SIAM-NSF Working
Group 2012).

Active learning through model building

The formulation of a mathematical model requires
understanding of both the biology of the problem
and the modeling approach being implemented, and
guiding students through this process can be challeng-
ing (Niss 2012). Galbraith (1989) summarized the

L. D. Waldrop et al.

following three approaches to teaching mathematical
modeling:

e Generalized applications approach: The instructor
introduces the model and the students manipulate
it under controlled conditions.

e Structured modeling approach: The students are
exposed to all stages of the modeling process,
but the instructor exerts considerable control
over the mathematical model that is to be used.

e Open modeling approach: All stages of the model-
ing process are completed with limited assistance
from the instructor. Students study a problem at
the level of mathematics they are comfortable
using.

Each of these approaches helps students to develop
distinct skills, and instructors can scaffold these
approaches to facilitate the development of mathe-
matically mature modeling skills. The generalized
applications approach may provide a useful format
to introduce students to modeling techniques and
canonical models in mathematical biology. The
structured modeling approach allows students to de-
velop model-building skills in an environment that
maximizes successful learning outcomes. Finally, the
open modeling approach provides students with re-
alistic model-building experiences and encourages
creative solving of problems.

Alternatively, the structured modeling approach
can be applied on a case-by-case basis throughout
the model-building exercise, depending upon the
progress of each group. Galbraith (1989) outlined
three types of intervention that can be used:

e Subtle intervention: The instructor subtly suggests
which model to use.

e Open intervention: After the students have written
down their own models, the instructor then pre-
sents the model that is commonly used.

e Delayed intervention: The instructor allows the
class to complete the modeling process on their
own, and then presents the model commonly
used.

By maintaining awareness of the types of interven-
tion appropriate for a given situation, the instructor
can tailor students’ interactions to maximize expo-
sure to realistic model building while ensuring a
baseline level of progress.

How training in model-building benefits students

Courses with an emphasis on model building en-
hance students’ performance in quantitative thinking,
and they also help to develop other skills. Since
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model building requires a diverse set of skills, con-
struction of original mathematical models for new
biological problems challenges all students at all
levels. Mathematical modeling tends to level the
mathematical playing field: every student from the
upper level mathematics major to the pre-medical
student with one semester of Calculus can make sub-
stantial contributions to modeling projects. Due to
the highly interdisciplinary nature of model-building
in quantitative biology, students both in mathematics
and in biology must often leave their disciplinary
comfort zones to work across disciplines. This exer-
cise poses additional challenges, and provides specific
educational benefits, to each subset of students.

Students in mathematics

Students in mathematics are exposed to mathemati-
cal models in many classes, but their experiences of
true model building may be limited. Traditional
mathematics classes are typically focused on solving
given equations. In more applied classes, there may
be some discussion on formulating problems and on
interpreting solutions. However, modeling in these
classes often is presented as an established endpoint
(e.g., the simple harmonic oscillator or the wave
equation) rather than an open-ended problem.
Therefore, providing opportunities for students to
grapple with the formulation and assessment of orig-
inal models in quantitative biology teaches skills that
may not be addressed in other parts of the under-
graduate mathematics curriculum.

Furthermore, the contrasts between the disciplines
of mathematics and biology encourage learning. In
mathematics, there is an emphasis on the discovery
of underlying truths. By contrast, biology involves
unavoidable uncertainty, and students quickly learn
to question results. Such questioning is a key precept
of biology, and the exposure to hypothesis-driven
inquiry is vital for mathematics students.
Mathematicians may be unaccustomed to presenting
their work in terms of questions or hypotheses, and
this may be a strong disadvantage for students in
mathematics who are crossing disciplinary bound-
aries or interacting with researchers in other
scientific fields through collaborations or cross-
disciplinary competitions for grants or fellowships.
Course work that teaches students to frame their ef-
forts in terms of hypotheses may also benefit students
in fields such as computer science and theoretical
statistics.

Model building also provides mathematics stu-
dents with more experience working on real-world
applications, working in teams, and communicating
to non-mathematicians. These outcomes are

particularly significant when one considers a recent
survey of industrial managers performed by the
Society for Industrial and Applied Mathematics
(STAM-NSF Working Group 2012). When asked
about key strengths for industrial mathematicians,
managers noted the following:

e Understanding of and interest in practical applica-
tions (41%).

e Communication skills, interaction with others
(36%).

e Breadth of knowledge of other areas (23%).

Although these are necessary skills for most profes-
sions, developing these skills is particularly valuable
for the many undergraduate math majors who will
join the industrial workforce.

Students in biology

Biology has a reputation for having less quantitative
emphasis than other sciences such as physics and
chemistry (Fawcett and Higginson 2012). However,
most current biological research requires a strong
quantitative background that may not be provided
in a standard undergraduate biology curriculum
(Bialek and Botstein 2004; Gross et al. 2004; Speth
et al. 2010; Feser et al. 2013; Ledder et al. 2013).
Model-building courses provide exposure to mathe-
matics in a format that motivates and engages stu-
dents through relevant biological questions. In
addition to developing quantitative skills, these
courses demonstrate how modeling can be used
both as interpretive and investigative complements
to experiments.

A single course in quantitative biology may not
equip biology students to model their own experi-
mental results, but it can develop skills that enable
students to engage with mathematical modeling at a
more sophisticated level. Students achieve a familiar-
ity with mathematical modeling that will allow them,
as future researchers, to communicate with mathe-
matical collaborators and to critically evaluate math-
ematical modeling approaches by others.

Initiatives/resources in active learning

A large body of resources exists for implementing
active-learning strategies in college-level classrooms.
However, typical instructors may not be familiar
with these resources. In this section, we present sev-
eral types of resources that are useful for instructors
hoping to use these pedagogies for the first time or
build upon previous efforts to enhance students’
learning. These resources, their references, and web-
site addresses are summarized in Table 1.
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Table 1 Summary of initiatives and resources facilitating active learning of quantitative biology

Name Description

Website or reference

Initiatives in quantitative biology

Courses for majors Calculus
Broader mathematics
Mathematical modeling
Upper-level biology
Quantitative biology

Courses for non-majors First-year seminars
Quantitative biology

Resources in active learning

Collaborative learning Books and papers
SCALEUP
Technology
On-line software Appsbar

MathWork’s Desktop and Web
Deployment tool

R Studio’s Shiny

In-class Clickers/Personal Response Systems

Poll Everywhere

Interactive Whiteboards

Social media Twitter
Figshare
Specialized software Numb3r5 Count Project

Biological ESTEEM Project
Netlogo
PhET Interactive Simulations
SimBio
Cell Collective

Class activities

Hands-on labs BioMathLab Project

Textbooks

Other activity repositories QUBEShub

National Center for Case Study Teaching
in Science

University of Tennessee, Knoxville
Workshops NIMBios

BioQUEST

Symposium on BEER

Evaluation and assessment

In-class instructor Peer Review
RTOP
TDOP
COPUS
Course evaluation TPI

Adler (2012), Neuhauser (2010), Ledder (2008)

Bodine et al. (2014)

Eager et al. (2014), Galbraith (1989)

Hastings (1996), Kokko (2007), Keeling and Rohani (2007)
Full et al. (2015)

Hyers and Joslin (1998), Starke et al. (2001), Tinto (1999)
Jungck and Roy (2014), Jungck (2012a)

Barkley et al. (2005), Linton et al. (2014a), Full et al. (2015),
Joshi et al. (2007)

Beichner (2008), NCSU (2011)

http://www.appsbar.com/

http://www.mathworks.com/desktop-web-deployment/
deploying-code-web-application.html

http://shiny.rstudio.com/

Gauci et al. (2009), Greer and Heaney (2004),
Smith et al. (2011), Andrews et al. (2011)

http://www.polleverywhere.com

Dhindsa and Shahrizal Emran (2010, 2011)
Drew (2015); http://twitter.com
http://figshare.com
http://bioquest.org/numberscount/
http://bioquest.org/esteem/
https://ccl.northwestern.edu/netlogo/
http://phet.colorado.edu

http://simbio.com

Helikar (2012, 2015)

Kohler et al. (2010), Powell et al. (2012), Haefner (2008)

Vogel (1996, 2013), Cornette (2012), Robeva et al. (2008);
Mahaffy (2005), Keller and Thompson (2012a, 2012b, 2012c)

http://qubeshub.org/

https://sciencecases.lib.buffalo.edu/cs/collection/

http://www.tiem.utk.edu/~gross/bioed/modulelist.html
http://www.nimbios.org/
http://bioquest.org

https://about.illinoisstate.edu/biomath/beer

Falchikov and Goldfinch (2000)
Sawada et al. (2002), Smith et al. (2013)

Smith et al. (2013), Hora and Ferrare (2013),
http://tdop.wceruw.org/Document/TDOP-Users-Guide.pdf

Smith et al. (2013)
Wieman and Gilbert (2014)
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Vision and change—a place to start

For instructors interested in integrating active-
learning strategies into their courses, an excellent
place to start is the Vision and Change document,
a report from the American Association for the
Advancement of Science 2009 conference on under-
graduate biology education (AAAS 2009). Vision and
Change includes a list of student-centered learning
resources and a list of assessment instruments and
instructional methods with supporting references.
Vision and Change also identifies resources for inte-
grating multiple forms of assessment for tracking
students’ learning and provides methodology for
using the information gathered to improve the class-
room environment (AAAS 2009).

Resources for developing active-learning techniques

Several books and articles present practical informa-
tion about learning and incorporating active-learning
strategies. Some of these resources present basic
classroom techniques for creating a student-centered
learning environment (Jungck 1991; Asokanthan
1997; Fortus et al. 2004; Barkley et al. 2005;
Handelsman et al. 2007; Tanner 2013; Aikens and
Dolan 2014). Others focus on creating learning en-
vironments for more specific conceptual material,
such as experimental design (Brownell et al. 2013).
Freeman et al. (2011) described how to increase
course structure from low (lecture-based) to high
(active learning), and a follow up study by Eddy
and Hogan (2014) included some specific examples
of how course structure was improved for an intro-
ductory biology class. Other articles provide over-
views on how technology can be wused to
incorporate active learning in the classroom. Some
examples include the use of interactive whiteboards
(Dhindsa and Shahrizal Emran 2010, 2011) and per-
sonal-response systems (Greer and Heaney 2004;
Gauci et al. 2009).

Collaborative learning

Collaborative learning environments give students
the opportunity to engage and explore conceptual
material with other students and instructors during
lectures, laboratory-based activities, or projects out-
side of class time. Working in peer groups signifi-
cantly improves students’ comprehension,
independent of the skill of the instructor (Springer
et al. 1997; Linton et al. 2014a, 2014b). Importantly,
significant improvements from collaborative discus-
sion came primarily in higher-level conceptual mate-
rial, application, and synthesis, all of which are
critical skills for students of quantitative biology

(Linton et al. 2014a). Furthermore, collaborative
learning environments more accurately mimic the
environments in which students will eventually con-
tribute as workers in industry or in academia.

Collaborative learning spans a great number of
techniques (summarized by Barkley et al. 2005)
that can easily be incorporated into traditional col-
lege courses. Many techniques can be added to ex-
isting lecture-based courses for in-class discussion
(i.e., turn to your neighbor and discuss) or paired
with in-class technologies such as clickers (see the
“In-class technology” section) for rapid feedback.
More traditional laboratory-based courses can also
benefit from techniques that increase students’ en-
gagement with instructors and peers without chang-
ing existing laboratory exercises.

Student groups can be self-formed or instructor
assigned, ephemeral (turn to your neighbor) or
long-lasting (semester-long projects). When students
are allowed to form groups, these groups tend to be
composed of students of the same major, intellectual
background, and interests. Working in such a homo-
geneous group can create more competition than
cooperation where ideas from similar backgrounds
compete for the group’s use. In a mathematical bi-
ology course, instructors can assign group members
with complementary backgrounds and skills to pro-
vide depth in areas than would otherwise be inacces-
sible to a homogenous group of mathematicians or
biologists. This strategy has been used successfully
with multi-disciplinary topics such as comparative
biomechanics (Full et al. 2015) and mathematical
modeling to increase the depth of material covered
and the creativity and sophistication of students’
work, and there are many examples from the
National Science Foundation (NSF) program
Interdisciplinary Training for Undergraduates in
Biological and Mathematical Sciences (UBM) that
paired mathematics and biology undergraduates in
research projects (Joshi et al. 2007).

A well-studied example of a successful project that
implemented an effective interactive learning envi-
ronment in large introductory science courses is
the SCALEUP Project that was piloted at North
Carolina State University (Beichner 2008; NCSU
2011). SCALEUP was designed to replace the
common laboratory/lecture scheme with an inte-
grated collaborative, group-based classroom environ-
ment. In a SCALEUP classroom, students are divided
into groups of 3, and they work through activities
that are interspersed throughout the class. An impor-
tant outcome of this strategy is increased communi-
cation among students and between students and
their instructors. Significant evaluation of the project
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shows that these approaches positively influence stu-
dents’ learning. Specifically, problem-solving skills
are improved, conceptual understanding is enhanced,
students’ attitudes are improved, failure rates are re-
duced, and there is better retention of “at risk” stu-
dents. More than 50 schools across the country have
adapted SCALEUP with the goal of getting students
to work together to investigate interesting problems
and to increase interaction with instructors.

Barkley et al. (2005) is an excellent resource for
implementing all aspects of group work in a college-
level setting. It covers group introductions, strategies
for structuring, and evaluating group work through a
large variety of Collaborative Learning Techniques. It
also covers troubleshooting for common pitfalls such
as problems with inequitable work, cheating, and
students’ resistance.

Technology

Pedagogical approaches that employ technology can
be very useful for incorporating active learning into
different classroom settings. The scalability of many
of these technological tools allows faculty to combine
the individual involvement possible in smaller classes
with the resources of large classes. For example, tools
such as clickers and polls can facilitate participation
by students, even in large lectures, while social media
can facilitate discussions and extend classroom inter-
actions to engage the greater public.

Online software and application tools

Many mathematical models involve computing proj-
ects that may exceed the coding ability of undergrad-
uate students. Creating online applications for
participants is a good way of bridging this gap by
making computational models more accessible both
to students and instructors. Several services aid in
the creation and dissemination of applications.
Appsbar (http://www.appsbar.com/) aids in creating
applications for different platforms. MathWork’s
Desktop and Web Deployment tool (http://www.
mathworks.com/desktop-web-deployment/deploying-
code-web-application.html) creates MATLAB-based
components for use on the Web and does not re-
quire additional software for the end user to operate
the application. Similarly, Shiny is a free, open-
source package in R (R Studio, http://shiny.rstudio.
com/) that allows users to build web-based applica-
tions directly from R.

In-class technology

Clickers are an increasingly popular method of inte-
grating existing lecture-based courses with inquiry-
based strategies (Smith et al. 2011). Clickers are
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small devices purchased by universities or students
that allow students to answer multiple-choice ques-
tions posed to them by lecturers. Answers by stu-
dents can be displayed as they come in real time
or as a summary at the end of a set period of
time. Many groups have reported improved learning
when clickers are used in lecture-based introductory
courses, but success tends to be tied heavily to spe-
cific implementations and to the skill of the lecturer
(Andrews et al. 2011).

An alternative to clickers, Poll Everywhere allows
students to use their computers or cell phones to
answer multiple-choice or short-answer questions
during class (http://www.polleverywhere.com/). Poll
Everywhere allows instructors to create, track, and
grade answers to polls. As with clicker-based polls,
these polls may be used to track results in real-time
or to evaluate learning over time. Many universities
have professional accounts with Poll Everywhere,
making it easy for instructors to sign up and get
help with the tools of the website.

Social media

Social media provides a unique way to engage stu-
dents in material and increase the diversity of voices
in the classroom (for more information, see Drew
2015). Services such as Twitter (http://twitter.com),
a micro-blogging platform, help to create, develop,
and publish ideas, as well as promote engagement
with material both from students and the public
(Darling et al. 2013). Other platforms such as
FigShare (http://figshare.com/) provide a way to
make content more accessible to students oft-
campus (Drew 2015). Additionally, social media is
an effective way to build equality in the classroom
and to promote increased diversity within science by
providing a greater exposure to a wider array of
voices and experiences (Drew 2015).

Specialized software projects

The Numbers Count Project is dedicated to the use
of quantitative tools for solving biological problems.
This initiative was led by Claudia Neuhauser at the
University of Minnesota and was funded by the
Howard Hughes Medical Institute. The project web-
site, http://bioquest.org/numberscount/, includes a
variety of open resources including biological data,
introductory mathematical modules for biology and
chemistry, statistics modules, resources from
workshops, course materials for calculus and intro-
ductory statistics, and a variety of other resources
and tools.

The Biological ESTEEM project provides Excel
simulations and tools for exploring experimentation

GTOZ ‘2T 1nbny uo 159nB Ag /Blo'seulnolploxo gol//:dny wouj papeojumoq


http://www.appsbar.com/
http://www.mathworks.com/desktop-web-deployment/deploying-code-web-application.html
http://www.mathworks.com/desktop-web-deployment/deploying-code-web-application.html
http://www.mathworks.com/desktop-web-deployment/deploying-code-web-application.html
http://shiny.rstudio.com/
http://shiny.rstudio.com/
http://www.polleverywhere.com/
http://twitter.com
http://figshare.com/
http://bioquest.org/numberscount/
http://icb.oxfordjournals.org/

Active learning in quantitative bio

with mathematical models in the life sciences (http://
bioquest.org/esteem/). This effort is led by Anton
Weisston, John Jungck, and Raina Robeva, and is
supported by NSF and the Mathematical
Association of America. Excel was chosen as the gen-
eral development environment given its availability
and familiarity to most students and faculty.
Currently, the project’s site includes over 40 modules
in subject areas ranging from pharmacokinetics to
island biogeography to models of continuous
growth. New modules are continually being devel-
oped, and all are welcome to contribute their own
materials using the specifications provided on the
project’s site.

The agent-based modeling tool Netlogo (https://
ccl.northwestern.edu/netlogo/) has been specifically
developed for education about models that follow
the actions of individual agents. This approach has
been applied in essentially every area of biology and
the pedagogy for its use in educational settings has
been very well documented. The software is freely
available, as well as implemented through a web-
interface, and can be used with real-time interactions
that allow students to jointly and/or individually
modify components of the model, such as a disease
simulation in which students can control the move-
ments of individuals so as to prevent spread of
infection.

Additionally, several other software projects are
available to aid in teaching biological systems
through manipulating simulations. These include
PhET Interactive Simulations (http://phet.colorado.
edu), SimBio (http://simbio.com), and the Cell
Collective (Helikar 2012, 2015).

Published activities of the class

One barrier to implementing active-learning strate-
gies in college-level courses is the investment of time
required to stray from previously used materials and
develop new activities. However, several resources
exist to lessen this initial commitment of time by
providing a place to share exercises, laboratories, ac-
tivities, and advice on structuring the class. Below,
we highlight a few examples of these resources as
places to start.

Published hands-on quantitative biology laboratories

Experimental laboratories that incorporate mathe-
matical modeling allow students to obtain their
own data for validating the model and to consider
the assumptions that are made during the modeling
process. Exercises that combine experiment and
theory are often used in physics and engineering lab-
oratory courses, but they are less common in the life

sciences. The development of wet laboratories that
connect to biomathematical modeling has the poten-
tial to increase the retention of mathematics by in-
troducing mathematics within the context of
biological systems using discovery-based approaches.

The BioMathLab Project at Utah State University
was aimed at creating quantitative laboratory experi-
ences in the biology curriculum. Several papers that
describe specific laboratory activities that are easy
and inexpensive to implement have been published
as a result of this effort. Kohler et al. (2010) de-
scribed an activity in which students can compare
the movement of brine shrimp to a diffusion
model. The diffusion coefficient is estimated for in-
dividual brine shrimp, and the diffusion equation
with this coefficient is then used to predict the dis-
tribution of many brine shrimp in a petri dish.
Powell et al. (2012) described a set of activities that
encourage students to create their own models of
flow from a leaky bucket. Additional laboratories
may be found on the BioMathLab website (Haefner
2008) and include activities related to osmosis, pho-
tosynthesis, cooling, optimal foraging, enzyme kinet-
ics, and birds’ flight.

In addition to resources for individual laborato-
ries, there are also a variety of textbooks from both
the mathematics and biological sciences that include
hands-on activities and exercises and incorporate
mathematical modeling. Vogel (1996, 2013) include
hands-on activities and demonstrations that illustrate
the importance of mechanical models in biology.
Cornette (2012) developed a “Wet-Lab” Calculus
for the Life Sciences. The associated laboratories in-
clude topics ranging from exponential growth to
Fick’s law to how crickets’ chirp-rates depend on
temperature. Three of the laboratories are now in-
cluded in the National Council of Teachers of
Mathematics website, Illuminations (Keller and
Thompson 2012a, 2012b, 2012c¢). Virtual laboratories
can also offer students an opportunity for discovery.
Robeva et al. (2008) include simulations and anima-
tions that permit students to interact with biological
processes and to perform virtual dissections. Mahaffy
(2005) includes computer laboratories for simulating
biological processes that complement a calculus
course targeted to biologists.

Quantitative Undergraduate Biology Education and
Synthesis

The Quantitative Undergraduate Biology Education
and Synthesis (QUBES) project is funded by the
NSF, and the QUBES consortium (http://qubeshub.
org/) is an alliance of societies, institutions, and pro-
grams united to strengthen education in quantitative
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biology. The broad goals of the QUBES project are
to (1) coordinate educational efforts in quantitative
biology across disparate communities; (2) support
faculty who wish to implement specific quantitative
concepts and approaches to teaching; (3) increase the
visibility, utility, and adoption of existing quantita-
tive materials; and (4) track faculty’s contributions to
education in quantitative biology, and determine the
features of QUBES that increase the success of im-
plementation. The QUBES website (https://qubeshub.
org/) contains numerous resources related to educa-
tion, research, and collaboration in quantitative bi-
ology, including data, teaching materials, and
models. The website also includes a suite of interac-
tive software tools that can be run directly from a
web browser, allowing easy use of these educational
tools across platforms. Some of the software available
includes NetLogo, R Studio, QtOctave, and pplane.

Other repositories

The National Center for Case Study Teaching in
Science maintains a peer-reviewed collection of case
studies for teaching concepts in science (https://
sciencecases.lib.buffalo.edu/cs/collection/). Case stud-
ies provide an easy, exercise-guided method for in-
corporating active-learning strategies into lecture or
laboratory time. Within the current collection, there
are several case studies focusing on mathematical or
biological concepts, yet very few address topics in
integrated mathematical biology. However, this col-
lection offers an easy way to share existing lesson
plans with other educators.

At the University of Tennessee, Knoxville, a set of
over 50 modules were developed to accompany a
typical introductory biology sequence. Links to
these modules are available at http://www.tiem.utk.
edu/~gross/bioed/modulelist.html. Each module has
a standard format consisting of introducing a biolog-
ical question, defining key variables and their units,
identifying a relevant mathematical model and the
associated data to parameterize it, carrying out
some analysis of the model, and providing further
questions for students to investigate either individu-
ally or in groups.

The University of Maryland has developed a web-
site, MathBench Biology Modules at http://math-
bench.umd.edu, that highlights the mathematical
underpinnings of topics in an introductory biology
course. At least 36 modules cover biological topics
ranging from population dynamics to cellular pro-
cesses as well as more general topics such as mea-
surement and visualization. The modules include
interactive activities, games, and questions. The ac-
tivities also incorporate a wide range of mathematical
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topics including statistics, modeling, and difference
equations.

Workshops for sharing resources in quantitative-biology
education

In addition to published and online resources for
quantitative-biology education, workshops provide
important opportunities for dissemination of meth-
ods and materials. They also provide excellent net-
working  opportunities for educators. These
workshops are typically hosted at a rotating assort-
ment of colleges, universities, and other institutions
such as the Howard Hughes Medical Institute
(HHMI; https://www.hhmi.org/). Other common
venues include annual society conferences; for exam-
ple, this symposium had a companion session offer-
ing hands-on practice with quantitative-biology
modules in classrooms. HHMI and NSF in particular
have generously supported numerous workshops to
promote and disseminate instructional materials and
pedagogical innovations in quantitative biology.
Workshops are advertised on several websites, in-
cluding those hosted by QUBES (https://qubeshub.
org/), the National Institute for Mathematical and
Biological Synthesis (NIMBioS, http://www.nimbios.
org/), BioQuest (http://bioquest.org), and the
International Symposium on Biomathematics and
Ecology Education and Research (BEER; https://
about.illinoisstate.edu/biomath/beer).

Evaluation and assessment

Evaluation and feedback are important tools for im-
proving course structure, pedagogy, as well as the
performance and effectiveness of instructors. Here,
we discuss metrics that can be used to evaluate the
effectiveness of instructors and courses.

Metrics for in-class evaluation of instructors

We are all accustomed to being “reviewed” by our
students at the end of the semester in an instructor/
course evaluation. At most colleges and universities
there is a great deal of time and effort put into
crafting forms that give meaningful feedback.
However, there are several important limitations to
these common metrics for evaluation. First, typically,
instructors do not receive feedback until after the
conclusion of the course. Although many instructors
choose to conduct midterm evaluations, these are
less standardized across and within institutions.
Second, students are not trained observers in the
classroom. Even more involved approaches, such as
interviews with students, reflect a limited perspective.
To complement evaluations by students, peer ob-
servers may carry out a detailed assessment
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(Falchikov and Goldfinch 2000). Such peer feedback
may be particularly important for instructors who
are  experimenting with novel pedagogical
approaches, especially when these approaches push
students out of their traditional comfort zones.

Methods of evaluation by observation can yield
constructive feedback on the classroom environment
that can be used for research, evaluation of pro-
grams, development of faculty, and institutional as-
sessment. A number of protocols for faculty
observers have been developed with the objective of
providing a common language and format in which
to make useful and constructive observations and
allow reliable comparisons across classrooms. The
protocols range in the amount of preparation and
training required of the observer (Brown et al. 2008).

A widely used observation protocol for observa-
tion called Reformed Teaching Observation Protocol
(RTOP) was developed by the Evaluation Facilitation
Group of the Arizona Collaborative for Excellence in
the Preparation of Teachers. To implement this pro-
tocol, trained observers judge measures like engage-
ment of students and effectiveness of instruction,
using statements ranging from “not at all” to “to a
great extent.” Typically, observers participate in
multi-day training, and the protocol has been used
with proven reliability when implemented by trained
observers (Sawada et al. 2002). However, this proto-
col is less reliable when used by un-trained or weakly
trained observers; since judgments may be observer-
dependent, a lack of reliability can be problematic
for comparison across classrooms (Smith et al
2013).

Another protocol for observation is called the
Teaching  Dimensions  Observations  Protocol
(TDOP), which was specifically designed to address
post-secondary non-laboratory courses (Hora and
Ferrare 2013; Smith et al. 2013). This protocol was
developed as part of the Culture, Cognition, and
Evaluation of a study of STEM Higher Education
Reform funded by the NSF’s Reese Program. The
protocol is comprised of six categories: teaching
methods, pedagogical strategies, cognitive demand,
student—teacher interactions, student-engagement,
and instructional technology. Observers use codes
to describe the classroom environment and make
observations at 2-min intervals over the meeting of
the class. For example, an observer could describe
the teaching method being used as “SGW” meaning
students are working in small groups (Hora and
Ferrare 2013). Hora and Ferrare (2013) gave detailed
instructions on best practices and implementing peer
observations using TDOP in a User’s Manual: http://
tdop.wceruw.org/Document/ TDOP-Users-Guide.pdf.

"

The Classroom  Observation Protocol for
Undergraduate STEM (COPUS) is a procedure for
observing faculty to make reliable characterizations
of how faculty and students are spending their
time in STEM classrooms (Smith et al. 2013). It
was developed by science education specialists at
the University of British Columbia to eliminate judg-
ment on the part of the observer as well as to
shorten the amount of training required of the ob-
server. Faculty observers complete a training session
of 1.5h that prepares them to use the protocol to
document what students and instructors are spend-
ing their time doing in the classroom using specific
codes, similar to the TDOP. For example, an ob-
server could describe what the instructor is doing
using the code “Lec” to denote lecturing, or
“AnQ” to denote answering student questions.
However, with COPUS, the number of categories
in which observations are made is reduced to 2:
what are the instructors doing and what are the stu-
dents doing (Smith et al. 2013).

Establishing a culture of peer observation in a de-
partment can facilitate the essential cultural shift
necessary to engage deeply with the pedagogical
issues born from an active classroom (AAAS 2009).
Identifying like-minded peers with whom to discuss
and collaborate on classroom issues will lay the
groundwork for creating a community of support
in which instructors can experiment with active
learning and thoughtfully assess pedagogical innova-
tion (from Panel discussion at SICB).

Metrics for assessing courses

Information and feedback about teaching can also
translate to effective evaluation of the course itself.
Especially in courses that involve active learning or a
research component, the teaching strategies faculty
employ are tied to the content. The Teaching
Practices Inventory (TPI) was designed to give a de-
tailed characterization of the teaching practices used
in STEM courses, and it includes a quantitative mea-
sure of the extent to which research-based teaching
practices are used in a course (Wieman and Gilbert
2014). This inventory differs from the observation
protocols described above in that faculty complete
the inventory on their own (there is no observer)
in about 10 min and with little opportunity for sub-
jective judgment. The TPI captures the teaching
practices that are used over a semester rather than
merely a snap-shot of one or two lessons that are
observed using the aforementioned protocols. The
information contained in the individual inventories
can help improve courses and teaching and help to
increase consistency across a department. Identifying
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the practices that are being used can also help with
future implementation of a research component or
active-learning strategy in other courses.

Identification of needs

Despite the available resources for integrating active-
learning pedagogies into college-level classrooms,
some areas specific to quantitative biology need
more resources to bring these techniques into main-
stream use. Below are several areas in which re-
source-gaps and significant challenges still exist.

Numerical simulations

One common challenge in quantitative biology
courses is to successfully teach biology students
who range from mathematics/biology double
majors to those who have only taken one semester
of calculus several years earlier. Another challenge is
to go beyond the presentation of simple toy models
to the development and analysis of complex real-
world problems.

A solution to both challenges is to teach students
how to use computers to solve mathematical models.
Doing so will allow the students to focus on the
construction, interpretation, and validation of math-
ematical models rather than getting caught up in the
details of finding the solutions by hand. Some cau-
tion should be taken, however, so as to avoid the
misuse of computation. This approach should in-
clude some basic introduction to numerical analysis
and programming as well as exercises to explore
common issues that could produce incorrect results.
For example, students could use Euler’s method to
solve a simple ordinary differential equation with a
known solution. By comparing the size of the time
step chosen to the amount of error in the solution,
they could discover issues of convergence of the nu-
merical solutions.

Students’ attitudes represent another challenge in
teaching the use of computation. Students less famil-
iar with programming tend to resist the use of the
software and writing their own code. Often, they
assume that computational exercises represent addi-
tional work that will be difficult for them to com-
plete. One approach to help them discover that the
computer can be used to make their lives easier is to
introduce a module that requires tedious calculations
and then to write a simple program that does the
calculations automatically. For example, in a module
incorporated into a lesson on Brownian motion, stu-
dents could be asked to calculate a random trajectory
for 30 time-steps. They would then be guided
through a simple program that calculates the
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trajectory automatically and graphs the result. They
can experiment with modifying the program to be
extended to more time-steps, multiple random walks,
and a calculation of the average distance from the
starting point. Such an exercise highlights the utility
of the program for accomplishing things faster and
more easily than doing all the work by hand
(Rubinstein and Chor 2014).

Examples of relevance to premeds

Quantitative biology programs typically focus on ed-
ucating future researchers, but they also represent a
distinctive niche for students who are preparing to
enter careers in the health sciences. Although pre-
health majors/tracks are known for their extensive
requirements, many of the science courses that are
part of a standard pre-health curriculum overlap
with science courses that are required in quantitative
biology programs. Furthermore, basic courses in cal-
culus and statistics may also satisfy requirements for
majors both in pre-health and quantitative biology.
By exploiting this overlap, quantitatively-oriented
pre-health students can use a quantitative biology
major to explore their interdisciplinary interests
and distinguish themselves in competitive admissions
to medical school.

Stand-alone quantitative biology courses or short-
course sequences provide another alternative to con-
tribute to the preparation of pre-health students who
lack access to or sufficient interest in quantitative
biology programs. There are educational resources
for statistical analyses of biological data, and there
are many excellent educational materials for mathe-
matical biology that use intuitive and classical exam-
ples from ecology, evolution, and epidemiology.
However, there is a shortage of materials that use
modeling applied to the level of tissues or below to
tackle current problems that are appropriate for
sophomore-level biology students, a critical point
for students considering health-related fields. One
example of a highly quantitatively-focused basic
text at this level is Phillips et al. (2012) that could
readily be used for a basic course in cell biology for
students with stronger quantitative backgrounds.
Tailoring course-topics to address problems with
clear applications to human health emphasizes their
immediate relevance to the career-goals of pre-health
students, thereby encouraging these students’ inter-
ests in mathematical biology and computation. More
generally, the inclusion of quantitative biology
courses in a standard pre-health curriculum can pro-
vide unique training that complements coursework
from other fields. Specifically, the process of

GTOZ ‘2T 1nbny uo 159nB Ag /Blo'seulnolploxo gol//:dny wouj papeojumoq


http://icb.oxfordjournals.org/

Active learning in quantitative bio

model-building, particularly in a group setting that
draws on varied disciplinary strengths of group
members, develops skills in individual and team-ori-
ented critical thinking that are necessary for modern
medical practitioners.

Examples using less traditional areas of mathematics

The use of mathematical techniques to address bio-
logical questions has exploded over the past decade,
and biologically-motivated questions are driving the
creation of new mathematics (Cohen 2004; Hunter
2010). Current courses in mathematical modeling
tend to emphasize standard models based on differ-
ential-equations, but much progress has been made
in developing the modeling potential in many other
fields of mathematics. For example, approaches
common in graph theory are used widely in appli-
cations ranging from network theory and the rela-
tionship between structure and function of neuronal
networks to systems biology and questions involving
motifs and  pattern-recognition.  Topological
approaches have been used to understand DNA
underwinding, overwinding, knotting, and tangling
(Deweese et al. 2008). A short review of algebraic
methods applied to biological problems is given by
Robeva and Laubenbacher (2009), and these authors
make a strong case for incorporating algebra in the
mathematical biology curriculum since the topic is
more familiar than differential equations to most
students and faculty. Several recent textbooks have
included some of these mathematical approaches in
the context of biological applications (Robeva et al.
2008; Segel and Edelstein-Keshet 2013; Robeva 2015),
but additional methods and current examples of
problems relevant to many fields of biology and
mathematics are in need of development for the un-
dergraduate curriculum.

In addition, educational modules that teach math-
ematicians to frame their work in terms of hypoth-
eses are not currently available. It is likely that such
modules would also be very useful for students in
computer science and theoretical statistics. In partic-
ular, mathematicians often are not aware of the large
body of work that supports the use of strong infer-
ence in biological research (Platt 1964). It may be
especially useful to introduce this approach in con-
trast to the modeling approach and in the context of
inductive versus deductive reasoning (Glass and Hall
2008). Other educational modules that may be useful
for mathematicians studying biology include illustra-
tions of biological variation, diversity, experimental
design, and measurement-error.
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Conclusions and recommendations

The above survey focuses on the range of approaches
in quantitative biology education as well as present-
ing several key areas the authors have identified as
being ripe for the development of new educational
materials. One important area of need includes the
development of lesson materials and textbooks on
topics in quantitative biology for non-majors, includ-
ing students outside of the STEM fields. Another key
area for the development of curriculum involves the
development of biological examples that require the
use of non-traditional applied mathematics, includ-
ing graph theory, topology, and algebra.
Interestingly, these two areas are not necessarily in-
dependent. Many quantitative and mathematical bi-
ology texts focus on the application of differential
equations, and to some extent linear algebra, to
problems in biology. It can be particularly challeng-
ing to use these techniques in a diverse class where
some students are adept at calculus and linear alge-
bra while others have never seen this material. The
application of methods from topology, graph theory,
and algebra offers a unique opportunity to introduce
new tools to a broad audience while keeping ad-
vanced mathematics students engaged.

As more instructors incorporate active-learning
techniques into their classrooms, there will also be
more opportunities to assess the power of these
approaches. Although there is strong evidence that
active learning assists learning generally, the explicit
interdisciplinary context of quantitative biology has
not been assessed relative to the capability to en-
hance development of mathematical concepts or
the creative aspects of mathematical model-building.
To date, there are few studies addressing the impact
of the connection between mathematical and biolog-
ical disciplines on the educational goals in the re-
spective disciplines. Thus, although the advantages
of integrated approaches resonate with instructors,
there is little non-anecdotal evidence that inclusion
of biological examples motivates undergraduates to
more readily conceptualize and effectively use the
quantitative tools discussed. Going forward, there is
a clear need for collaboration with researchers in
education to determine which of the approaches
and types of courses discussed above are most effec-
tive in enhancing learning in quantitative biology.
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