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Abstract
A major transition in the history of the Pancrustacea was the invasion of several lineages of these animals onto land. We
investigated the functional performance of odor-capture organs, antennae with olfactory sensilla arrays, through the use of a
computational model of advection and diffusion of odorants to olfactory sensilla while varying three parameters thought to be
important to odor capture (Reynolds number, gap-width-to-sensillum-diameter ratio, and angle of the sensilla array with respect
to oncoming flow). We also performed a sensitivity analysis on these parameters using uncertainty quantification to analyze their
relative contributions to odor-capture performance. The results of this analysis indicate that odor capture in water and in air are
fundamentally different. Odor capture in water and leakiness of the array are highly sensitive to Reynolds number and moderately
sensitive to angle, whereas odor capture in air is highly sensitive to gap widths between sensilla andmoderately sensitive to angle.
Leakiness is not a good predictor of odor capture in air, likely due to the relative importance of diffusion to odor transport in air
compared to water. We also used the sensitivity analysis to make predictions about morphological and kinematic diversity in
extant groups of aquatic and terrestrial crustaceans. Aquatic crustaceans will likely exhibit denser arrays and induce flow within
the arrays, whereas terrestrial crustaceans will rely on more sparse arrays with wider gaps and little-to-no animal-induced
currents.
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Introduction

Odor Capture in the Pancrustacea

Collecting information contained in chemical stimuli, or odors,
is a primary way for an animal to interface with its external
environment. Animals, including crustaceans and insects, rou-
tinely use odors to find food (Kamio and Derby 2017; Rittschof
and Sutherland 1986; Solari et al. 2017), symbiont hosts
(Ambrosio and Brooks 2011), to recognize individual

conspecifics (Gherardi et al. 2005; Gherardi and Tricarico
2007), to mediate reproduction (Gleeson 1980), and to avoid
predators (Diaz et al. 1999; Pardieck et al. 1999). Odors can
illicit behaviors by acting as signals or cues, and these behaviors
can be either innate or learned (Derby and Weissburg 2014).

An important development in the Pancrustacea or
Tetraconata, a group including crustaceans and insects, was
the invasion of land. Within the Pancrustacea, several lineages
evolved independently to live in terrestrial habitats, including
Isopoda, Amphipoda, Coenobitidae (terrestrial hermit crabs
and Birgus latro), and Ocypodidae (ghost crabs) (Bliss and
Mantel 1968; Greenaway 2003; Hansson et al. 2011;
Harzsch and Krieger 2018; Wellins et al. 1989). With this
change in habitat came a change in the physical properties of
the fluid surrounding these animals. Since odor capture and
the nature of the odor signal created by environmental flows
are both dependent on the physical characteristics of the fluid,
the nature of odor capture fundamentally changed between
water and air. Has this transition to a terrestrial environment
influenced the morphology of odor-capture structures? And
can we detect a functionally important signal in the diversity
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of odor-capture structures that reflect the differences imposed
by changing the physical properties in which these structures
operate?

Fluid Dynamics of Odor Capture

From odor source to animal, the fluid dynamics of environ-
mental flows create complex odor plumes, discontinuous se-
ries of high-concentration odor pulses, that animals must in-
terpret to navigate (Dickman et al. 2009; Koehl et al. 2001;
Murlis et al. 1992; Reidenbach and Koehl 2011; Weissburg
2000; Webster and Weissburg 2009). Animals must capture
the information contained within these complicated plumes
along with fluid-dynamic cues in order to navigate to the
source (Atema 1995; Moore et al. 1991; Page et al. 2011a,
b;Weissburg 2011;Weissburg et al. 2012). Odor capture is the
process by which odorants are extracted from environmental
fluid, and it is an important step in olfaction as a whole
(Kepecs et al. 2006; Moore and Kraus-Epley 2013;
Schneider et al. 1998). Typically, specialized structures inter-
act with moving fluid, produced by drawing air into a cavity
(in the case of mammals) or moving an external
chemosensory surface through a fluid (in the case of many
crustaceans which use external arrays of hair-like sensilla both
mounted on antennae and scattered across their bodies).

Odor capture by sensilla arrays depends on the physical
interactions between the sensilla array and fluid movements,
created by the animals and by environmental flows.
Environmental fluid movement, such as wind or water cur-
rents, creates odor plumes by dispersing dissolved odorants
from the source into the environment. Odorant molecules that
dissolve from a source into the surrounding fluid are pulled by
turbulent mixing to create high concentration filaments of
odor. At large time scales, odors appear to have a Gaussian
distribution (averaged across space and time), but at small
time and spatial scales (comparable to those experienced by
small animals such as insects and other crustaceans) are com-
plicated patterns of odor filaments with varying widths, fre-
quencies, and concentrations (Bingman and Moore 2017;
Dickman et al. 2009; Murlis et al. 1992; Weissburg 2000).
Animals use this information to interpret the location of odor
sources (Cardé and Willis 2008).

The characteristics of an odor plume vary with the proper-
ties of the environmental fluid (air or water) and an odorant’s
ability to diffuse in that medium. A fluid’s density (ρ) and
dynamic viscosity (μ) will affect the size and frequency of
turbulent eddies that create odor filaments at the source, pro-
ducing relatively larger, less frequent eddies in water than in
air (Murlis et al. 1992; Webster and Weissburg 2009;
Weissburg 2000; Weissburg 2011). The size and frequency
of these odor filaments is determined largely by the size of
the smallest eddy possible in the fluid and the rate at which the
odorant molecules diffuse within the fluid. Eddy size is

determined by the Kolmogorov microscale, which are around
a millimeter in typical situations (Moore and Crimaldi 2004;
Pravin and Reidenbach 2013; Weissburg 2000). The rate of
diffusion of an odorant, quantified by the diffusion coefficient
(D), is typically several orders of magnitude smaller in water
than in air. This creates odor filaments that are highly concen-
trated and thin in water (where diffusion is slower) and rela-
tively wider and less concentrated in air (where odorants dif-
fuse more rapidly) (Murlis et al. 1992; Weissburg 2011). The
size of the smallest of these chemical structures is described by
the Batchelor scale, and range from 30 times smaller than the
Kolmogorov microscale in water to around the same size as
the Kolmogorov microscale in air (Moore and Crimaldi
2004). These create distinct patterns of odorant signals at the
size and time scale of a sensilla array (Bingman and Moore
2017; Reidenbach and Koehl 2011).

In addition to environmental fluid flow, many aquatic and
some terrestrial crustaceans and insects wave, or flick, their
antennal olfactory arrays to generate fluid movement during
odor capture. This fluid movement serves many purposes: it
introduces a new sample of fluid close to the sensory structure
and moves previously sampled fluid away (Schmidt and Ache
1979); it thins the attached layer of fluid around the solid
sensory structure (the fluid boundary layer) so that molecular
diffusion acts over a shorter distance (Stacey et al. 2002;
Koehl 2011); and it increases the temporal and spatial sam-
pling of the fluid environment, thereby increasing the proba-
bility of detecting rare or discontinuous odor signals (Cardé
and Willis 2008; Kepecs et al. 2006; Koehl 2006).

The amount of fluid penetration, or leakiness, in an array of
sensilla depends on the interactions of the boundary layers
around the individual sensillum and the distance between the
sensilla. The relative thickness of the boundary layer depends
on the Reynolds number (Re):

Re ¼ Ulρ
μ

; ð1Þ

where l is a characteristic length scale (such as the diameter of
a sensillum) and U is the fluid speed relative to the object.
Higher flow speeds result in higher Re and thinner boundary
layers. Cheer and Koehl (1987a, b) described the relationship
between Re and gap-width-to-sensillum-diameter ratio (Gw)
between sensilla in the critical ranges that crustacean sensilla
arrays occupy (0.01 < Re < 10 and Gw). When Re is high or
sensilla are spaced further apart, individual boundary layers
do not interact and fluid flow is able to penetrate the array,
bringing odor molecules very close to the sensillum surfaces,
where diffusion takes odor molecules the final distance to the
sensillum’s surface. If flow is slow enough or sensilla are close
together, individual boundary layers begin to overlap and
drive flow around the array (as opposed to through it),
restricting access of odorant molecules to the inner sensory
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surfaces of the array (Schuech et al. 2012; Stacey et al. 2002).
Air and water differ in terms of both fluid density (ρ) and

viscosity (μ), which will affect the leakiness of the same array
in each fluid. Air is 850 times less dense than water and its
dynamic viscosity is 59 times lower, leading to Re being 15
times lower when an array operates in air as opposed to water.
Waldrop and Koehl (2016) calculated that the same antennal
array would experience a dramatic decrease in leakiness when
moved from water to air that could affect odor-capture
performance.

The delivery of odorant molecules to sensory structures
depends not just on fluid movement, but also on the rate of
diffusion in the fluid. Odor capture also relies on the scaling of
advective flows versus the rate of diffusion. The Péclet num-
ber (Pe) describes the relative importance of advection (bulk
fluid movement) to diffusion:

Pe ¼ Ul
D

: ð2Þ

For Pe > 1, advection dominates transport of odorant mol-
ecules to a structure, whereas for Pe < 1, diffusion dominates
transport.

Typically, molecules will have much higher diffusion coef-
ficients in air compared to water due to the lower density of
air. As a result, Pe for the same molecule can be 100 to 10,000
times higher in water compared to air. For a sensillum array of
similar size to the antennae of marine crustaceans responding
to an odorant in air and water, Pe can be over 1 in water and
below 1 in air (Waldrop and Koehl 2016;Waldrop et al. 2016).
This suggests by simply changing the fluid in which the sen-
sillum array is operating there may be a major shift in the
dominant form of mass transport to the array, potentially al-
tering the selective pressures on the array’s morphology
(Mellon and Reidenbach 2012).

Diversity in Antennal Functional Morphology

Many species within the Pancrustacea have sensory structures
that consist of external arrays of hair-like sensilla concentrated
on antennae that protrude away from the head (Fig. 1). The
types of sensilla vary, and as a result, antennae can provide a
range of sensory modalities, including olfaction, gustation,
and mechanosensation.

The olfactory hardware of malacostracan crustaceans and
insects are similar (Harzsch and Krieger 2018). The olfactory
sensilla of insects and malacostracan crustaceans consist of a
hollow cylindrical tube of cuticle innervated by olfactory sen-
sory neurons, which project outer dendritic segments into the
body of each sensillum (Hallberg and Skog 2011). The cuticle
in malacostracan crustaceans is permeable to a variety of
chemicals and ions (Gleeson et al. 2000a, b), and the cuticle
of insect sensilla is impermeable with pores (Zacharuk 1980;

Keil and Steinbrecht 1984). Receptors on the outer dendritic
segments generate action potentials when exposed to odor-
ants, which are then relayed to the olfactory bulb of the brain.
The organization of the olfactory areas of the brain are so
similar, Harzsch and Krieger (2018) suggests they reflect a
deep homology between malacostracan crustaceans and
insects.

The length, diameter, flexibility, number, and arrangement
of olfactory sensilla vary widely across the Pancrustacea.
Malacostracan crustaceans possess arrays of specialized olfac-
tory sensilla called aesthetascs on their first antennae
(antennules) (Fig. 1a–d). Antennules can bear arrays which
can range from single lines of short, stiff aesthetascs per seg-
ment (Fig. 1a, c) (Derby 1982; Goldman and Patek 2002;
Grünert and Ache 1988) to dense plumes of long aesthetascs
(Ghiradella et al. 1968; Gleeson 1980; Snow 1973).
Coenobitid crabs possess aesthetascs that are shorter, blunter,
and more densely packed than their closest relatives (marine
hermit crabs) (Ghiradella et al. 1968; Hansson et al. 2011;
Stensmyr et al. 2005). The Ocypodidae seem to abandon
aesthetascs and antennules altogether and rely on
chemosensory sensilla on their legs for olfaction (Krieger
et al. 2015; Wellins et al. 1989).

Insects possess several types of olfactory sensilla, some
specialized to specific odorants (Zacharuk 1980).
Antennae can contain one or more types of these sensilla
in a variety of different arrangements which can depend
on species, sex, and ontogenetic stage (Fig. 1e–f)
(Hallberg and Hansson 1999; López et al. 2014).
Arrangements of sensilla range from simple, short arrays
of sensilla protruding from the antenna (Fig. 1e, f) to
silkmoth antennae which bear dense arrays of specialized
sensilla sensitive to sex pheromones (Fig. 1g).

Due to the importance of both fluid movement and diffu-
sion in odor capture, it is unclear to what extent morphological
differences in antennal arrays, either within taxa or across
taxa, lead to differences in functional performance. Many
studies have examined fluid flow through aesthetasc arrays
of aquatic and terrestrial malacostracan crustaceans as a proxy
for odor capture, focusing on the role of Re andGw in sensilla
arrays (Mead et al. 1999; Reidenbach et al. 2008; Waldrop
et al. 2015a, b). Crayfish exhibit longer aesthetascs with wider
gap widths in areas of low flow (Mead 2008). Terrestrial her-
mit crabs exhibit a reduction in aesthetasc length and density
compared to marine crabs (Ghiradella et al. 1968; Mellon and
Reidenbach 2012; Snow 1973), and this likely leads to in-
creased odor capture in air (Waldrop et al. 2016). There are
other reductions of aesthetasc and brain features in terrestrial
or semi-terrestrial brachyruan crabs, making it unlikely that
these animals engage in olfaction in air (Krieger et al. 2015).
To date, there has been no systematic study of how common
features of antennal array morphology affect odor-capture per-
formance across the Pancrustacea.
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Computational Modeling and Evolution

Understanding diversity in sensilla-array morphology and its
interaction with environmental flows in part requires under-
standing performance over a wide variety of antennal mor-
phologies and flow conditions. There are a large number of
parameters associated with the morphology of the arrays and
the kinematics of movement, such as the number of sensilla,
spacings between sensilla, diameters of sensilla, their position
relative to the central support structure. Additionally, there are
a large number of parameters based on environmental condi-
tions that will also alter the performance of the array, including
Re and Pe numbers.

Computational models represent a cheap, efficient way at
evaluating a relevant performance metric over a very large
range of existing and theoretical sensilla-array morphologies.
Coupled advection-diffusion studies are better suited to eval-
uate functional performance of an array during odor capture

than examining leakiness alone, since they take into account
the role of diffusion rates into capture. A wide range of mor-
phologies and environmental conditions can be mimicked
through modeling and the subsequent impact on odor-
capture performance measured.

Variation in these parameter inputs, the raw material on
which natural selection works, will affect the performance
outputs in complex ways. Altering single variables could have
oversized effects on performance or no effects at all. Systems
with few degrees of freedom can have several combinations of
inputs that produce the same performance (Bmany-to-one
mapping^) (Anderson and Patek 2015; Wainwright 2007).
Making sense of the holistic effects of input variation on per-
formance output is a key step in determining how functional
performance impacts the creation of morphological diversity,
despite being often overlooked in many studies (Patek 2014).

However, the lack of analysis tools that can quantitatively
describe parameter effects on computational models limits

Fig. 1 Select antenna
morphologies of the
Pancrustacea. a – d: aquatic
crustaceans (photos courtesy of J.
Poupin & the CRUSTA Database
(Legall and Poupin n.d.), insets
highlight first antennae and white
arrows indicate aesthetasc arrays.
e – f: insects (©Alex Wild, used
with permission) with prominent
antennae. a: Spiny lobster,
Panulirus argus, b: banded por-
celain crab, Petrolisthes
galathinus, c: red Hawaiian reef
lobster, Enoplometopus
occidentalis, d: aiyun-tenaga-
ohgigani, Chlorodiella
laevissima, e: hollyhock weevil,
Rhopalapion longirostre, f: red
imported fire ant, Solenopsis
invicta, g: cecropia silkmoth,
Hyalophora cecropia
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these models’ ability to inform studies of morphological di-
versity and evolution. In this study, we use uncertainty quan-
tification to quantify the relative effects of change on perfor-
mance and provide sensitivity analyses for individual param-
eters and parameter combinations. Using these sensitivity
analyses will allow us to assess which parameters are relative-
ly more sensitive than others and then make specific predic-
tions about what exists in corresponding natural systems.
Parameters that are very sensitive to change can either be
highly constrained and show little diversity in morphology
across clades or be the basis of very fast morphological change
within a clade (Anderson and Patek 2015; Muñoz et al. 2017).
Conversely, parameters that are not very sensitive could be
free to diversify and show high levels of morphological vari-
ation without significant sacrifices to functional performance.

Study Objectives

In this study, we have created a computational model of ad-
vection and diffusion to study the impact of variation in mor-
phological parameters on the functional performance of olfac-
tory sensillum arrays in differing fluid environments. This
model uses an idealized antennal sensillum array, representing
olfactory sensilla, to assess the sensitivity of three morpholog-
ical and kinematic parameters: Re of the fluid movement rel-
ative to the sensilla, the gap-to-diameter ratio of the sensilla
(Gw), and the angle of the array to the direction of oncoming
flow (θ). This array is tested in two chemical fluid environ-
ments – air and water – using a typical odorant filament and
diffusion coefficient characteristic of each environment.

With this model, we will address the following questions:

1. Do features of flow (average speed and shear rates around
sensilla, leakiness) predict odor-capture performance?

2. Are there differences in how parameters (Re,Gw, θ) affect
odor-capture performance in air and water?

3. Can sensitivity analyses generate hypotheses to predict
patterns of morphological diversity in extant groups, and
are these hypotheses different for aquatic and terrestrial
groups within the Pancrustacea?

Methods and Materials

Computational Model

In order to simulate fluid flow around the boundaries of each
sensillum and antenna, we used the constraint-based im-
mersed body method (cIB) (Bhalla et al. 2013; Kallemov
et al. 2016; Sharma et al. 2005), a version of the regular im-
mersed boundary method (IBM). The IBM, developed by
Peskin (Peskin 2002), fully couples the motion of an elastic

boundary with the resulting fluid flow. In the IBM, the incom-
pressible Navier-Stokes equations for fluid flow are solved on
a Eulerian grid using an external forcing term (F(x,t)) model-
ing the force on the fluid from the Lagrangian boundary:

ρ ut x; tð Þ þ u x; tð Þ∙∇u x; tð Þð Þ
¼ −∇ p x; tð Þ þ μ∇ 2u x; tð Þ þ F x; tð Þ; ð3Þ

∇ ∙u x; tð Þ ¼ 0; ð4Þ

where u(x, t) is the fluid velocity, p(x, t) is the pressure, ρ is the
fluid density, and μ is the dynamic viscosity of the fluid. The
independent variables are the time t and the position x.

The immersed boundary is modeled using Lagrangian
points. The interaction equations between the fluid Eulerian
grid and the boundary Lagrangian points are given by:

F x; tð Þ ¼ ∫ f s; tð Þδ x−X s; tð Þð Þds ð5Þ

Xt s; tð Þ ¼ U X s; tð Þð Þ ¼ ∫u x; tð Þδ x−X s; tð Þð Þdx; ð6Þ

where X(s,t) gives the Cartesian coordinates at time t of the
Lagrangian point labeled by parameter s and f(s,t) is the force
per unit length applied by the boundary to the fluid. In these
equations, the two-dimensional delta function, δ(x −X(s, t)),
is used to go between the Lagrangian variables and the
Eulerian variables. As stated above, Eq. 5, gives the force
from the boundary on the fluid grid. Eq. 6 gives the velocity
of the boundary, Xt(s,t) =U(X(s,t)), due to the fluid flow.

In the cIB, instead of treating each point separately (as is
the case for the regular IBM), the motion of the entire object
represented by points is constrained and prescribed. The ad-
ditional force due to the existence of this body is added to Eq.
4 for areas inside the internal volume created by the series of
points. The object boundary does not require connections of
springs and beams or meshing, making it more computation-
ally efficient.

We used an implementation of this method in the Immersed
Boundary with Adaptive Mesh Refinement (IBAMR) pack-
age with the constraint IB solver (Bhalla et al. 2013). IBAMR
uses local grid refinement to structure the Cartesian grid on
which the discretized incompressible Navier-Stokes equations
are solved, producing a grid that is fine close to the boundary
and courser away from the boundary to reduce computational
time (see Griffith and Peskin (2005); Griffith (2009); Griffith
and Lim (2012) for additional details on IBAMR).

The array was modeled in two dimensions as four solid
circles (representing four solid cylinders with a circular
cross-sectional area in three dimensions): three smaller
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cylinders representing olfactory sensilla (diameters, l =
0.01 m) evenly spaced in an array and a fourth representing
the supporting antenna (antenna diameter = 0.1 m) (Fig. 2a).
This hypothetical array was not modeled after an individual
species or group of animals, but represents characteristic fea-
tures of several groups which were found to have some effects
over fluid flow within sensillum arrays, including gap-to-
sensillum-diameter ratio (Gw) and angle of the array with
respect to flow (θ) (Cheer and Koehl 1987b,a; Loudon et al.
2000; Nelson et al. 2013; Reidenbach et al. 2008; Waldrop
2013; Waldrop et al. 2014, 2015b; Waldrop and Koehl 2016).
The gap between the edge of the center sensillum and the edge
of the antenna was maintained at 0.02m. The spacing between
the center of each sensilla that made up the array was deter-
mined by a gap-to-diameter ratio that varied between 1.4 and
49. The angle of the array relative to flow (positive x-axis) was
varied between 3.57° and 176°. Each cylinder was modeled
using evenly spaced points (spaced apart by 4.88 × 10−4 m).

Flow past the sensilla arrays was produced by imposing
Dirichlet boundary conditions at the positive and negative x-
axis boundaries of the domain as a fixed horizontal flow speed
of Ux and 0 for the positive and negative y boundaries. At the
beginning of each simulation, Ux was linearly increased from
0 to a final steady-state value to accelerate the flow past the
sensilla array. The speed of the flow tank’s ambient flow was
quickly accelerated and then set to a constant 0.06 m s−1. The
simulation was run until steady-state flow conditions were
reached. Data analysis excluded this period of increase to only
include steady-state flow conditions.

Flowwas simulated on a scaled-up version of a real sensilla
array and dynamically scaled by matching the Reynolds num-
bers (Re, Eq. 1) of the sensilla array based on the sensilla
diameter l and flow speed U =Ux. To alter the Re of each
simulation, the fluid density ρ was held constant at
1000 kg m−3 and the dynamic viscosity μ of the fluid was
changed, varying between 0.122–5.50 Pa s to create a range

Fig. 2 Two-dimensional model of an antennule (large black circle) and
three olfactory sensilla (small black circles). a. Flow direction is parallel
to the x-axis in the negative direction (black arrow, right to left). The
distance of the array from the antennule was fixed at 0.02 m. Colored
boxes (dark blue, light blue, purple) indicate initial levels of the adaptive
meshing on the Eulerian fluid grid used to calculate velocities, increasing
in fineness. Parameters altered in the study are the angle of the array with
respect to flow direction (θ, red angle) and the gap-to-sensillum-diameter

ratio (Gw, orange line). b: Sample flow field produced by IBAMR for a
simulation (θ =38.038, Gw = 6.0787, Re = 0.24408). Colored flow fields
indicate magnitude of velocity, black arrows indicate direction. Scale is
non-dimensional speed, consistent for flow fields in b, c, and d. c:
Simulation with smaller values of θ and Gw than B (θ = 12.498, Gw =
2.822, Re = 2.505). d: Simulation with larger values of θ and Gw (θ =90,
Gw = 48.329,Re = 4.4376). Plots were generated using VisIt (Childs et al.
2012)
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of Re between 0.11–4.9. Table 1 outlines the parameters used
in the simulations. Additional details regarding sampling the
parameter space of Re, Gw, θ are below.

The velocity of the flow from the immersed boundary sim-
ulations were then coupled with an advection-diffusion solver
for an odor concentration to measure howmuch concentration
would be absorbed by each array. This model was developed
and presented in Waldrop et al. 2016.

The concentration, C(x, y, t) is solved for using:

∂C
∂t

þ ∂ uCð Þ
∂x

þ ∂ vCð Þ
∂y

¼ D
∂2C
∂x2

þ ∂2C
∂y2

� �
; ð7Þ

where u = (u, v) is the velocity field from the cIB simulations
and D is the diffusion coefficient. Eq. 7 is solved numerically
in a rectangular domain of 1.24 m × 1.24 m in air and in a
domain of 1.25 m × 1.25 m in water. This is smaller than the
domain used to solve for the fluid flow allowing the simula-
tions to be less computationally expensive.

Two different initial odor profiles were used to initialize
every simulation. When simulating arrays in water an initial
concentration of,

C x; y; 0ð Þ ¼ C∞e
−7 2 x−1:15ð Þ

0:1ð Þ2 ; ð8Þ

is set where x ranges from 1.1 m to 1.2 m (in Waldrop et al.
(2016), this initial condition is referred to as a thin filament,
here with a width of 0.1 m). The total amount of chemical
present is controlled (integration in x and y on the domain)
by setting the maximum value of the concentration, C∞ =
C∞

w = 3.128. When simulating arrays in air an initial condi-
tion, denoted the thick filament, is a never ending filament.
This initial odor concentration has the same exponential

profile, Eq. 8 as in the first condition from 1.1 m to 1.15 m
but with C∞ =C∞

a = 0.806 and then C(x, y, 0) =C∞
a for x >

1.15 m. The maximum concentrations were set such that the
total concentration introduced into each domain is equal dur-
ing the time of simulation. We allow each simulation to run to
time 20 s.

As mentioned above, flow around the array was simulated
on a scaled-up version of the array. Therefore, it was necessary
to also scale the Pe to match the relative rate of mass transport
due to advection and diffusion. To do this, we multiplied the
original diffusion coefficients fromWaldrop et al. (2016) by a
factor of 2000. The duration of the simulation was set to 20 s
to allow the odor filament to penetrate the entire domain. The
values used for these simulations are listed in Table 2.

Numerical Methods

The numerical method used to solve this mathematical model
is given in detail in the supplementary information ofWaldrop
et al. (2016) and was implemented in MATLAB. Strang split-
ting was used to solve the partial differential equation, Eq. 7,
in multiple steps. Each step was then solved using finite dif-
ferent methods. Here we summarize this method briefly. The
following steps are used to advance one time step:

1. Advection of the concentration for a half time step:

∂C
∂t

þ ∂ uCð Þ
∂x

þ ∂ vCð Þ
∂y

¼ 0: ð9Þ

A third-order weighted essentially non-oscillatorymethod
(WENO) is used to solve this step (Shu 1997).

2. Diffusion of the concentration for a full time step,

∂C
∂t

¼ D
∂2C
∂x2

þ ∂2C
∂y2

� �
: ð10Þ

Table 1 Parameters used in simulating fluid velocity fields with
constraint-method immersed body method (cIB)

Parameter Value range

Flow speed, Ux (m s−1) 0.06

Reynolds number, Re 0.11–4.9

Distance of array from antenna (m) 0.02

Diameter of sensillum, l (m) 0.01

Dynamic viscosity of fluid, μ (Pa s) 0.122–5.50

Density of fluid, ρ (kg m−3) 1000

Angle of array to flow direction, θ (°) 3.57–176

Gap-to-sensillum-diameter ratio, Gw 1.4–49

Domain size (m) 2 × 1

Space between grid points (m) 4.88 × 10−4

Time step (s) 1.0 × 10−6

Duration of Simulation (s) 0.025

Table 2 Parameters used in simulating advection and diffusion of
odorant concentration to the sensillum array using velocity vector fields
from cIB

Parameter Water simulations Air simulations

Diffusion coefficient, D (m2 s−1) 1.568 × 10−6 1.20 × 10−2

Grid resolution 2048 512

Width of filament (m) 0.1 ∞
Grid size, h (m) 6.1035 × 10–4 2.4 × 10−3

Time step, dt (s) 3.7 × 10−3 5.191 × 10−4

Simulation duration (s) 20 20
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The second order two-dimensional Crank-Nicolson meth-
od (LeVeque 2007; Strikwerda 2004) is used to solve this
step.

3. Determine how much concentration reached each grid
point within a sensillum and the concentration was set to
0 at that grid point.

4. Advection of the concentration for another half time step.

∂C
∂t

þ ∂ uCð Þ
∂x

þ ∂ vCð Þ
∂y

¼ 0: ð11Þ

Once again a third-order weighted essentially non-
oscillatory method (WENO) is used to solve this step
(Shu 1997).
A combination of Dirichlet and no-flux boundary condi-

tions are used in the steps given above. These are set exactly as
described in Waldrop et al. (2016).

An extensive convergence study was presented in Waldrop
et al. (2016). To verify that the slight modifications made to
method here did not change the convergence behavior of the
method, convergence was verified again using a velocity field
from cIB. Based on these tests we used spatial grids of 512 for
the air cases and 2048 for the water cases resulting in grid
sizes reported in Table 2 for the two different conditions.
The velocity fields from the immersed boundary simulations
were interpolated to these grids to be able to be used in solving
of the concentration. The time step, dt, was set as the smaller
of the constraint set by the Courant-Friedrichs-Lewy condi-
tion (0.9 h/U∞ where U∞ = 0.15 m s−1 is the maximum veloc-
ity in all simulations and h is the spatial grid size) or the
constraint set by the diffusive length scale (R2/4D where R =
l/2 = 0.005 m is the radius of the sensillum and D is the diffu-
sion coefficient) (LeVeque 2007).

Data Analysis

Fluid velocity fields simulated in cIB (example in Fig. 2b–d)
were used to calculate several values related to fluid flow
through and around the sensillum array using VisIt (Childs
et al. 2012) and R statistical software (R Development Team
2011). Velocity fields used for these calculations are the final
time step of the cIB simulation after steady-state flow had
been reached. The spatially averaged value of the magnitude
of velocities was calculated for a circle of radius 0.01 m
around each sensillum: the center sensillum in the array, the
‘top’ sensillum (which represents the sensillum counter-
clockwise from the center sensillum), and the ‘bottom’ sensil-
lum (which represents the sensillum clockwise from the center
sensillum). The magnitude of velocity was then non-
dimensionalized by multiplying by the velocity and the

duration of the advection-diffusion simulation time (20 s)
and divided by the sensillum diameter (l = 0.01 m). All veloc-
ities reported are dimensionless.

The shear rate of fluid at the surface of each sensillum was
calculated by sampling velocities along a line between the
sensilla (see Fig. 2 line labeled Gw). Shear rates were calcu-
lated at the surface of the sensillum to 30% of the sensillum’s
diameter away from its surface (0.003 m). These shear rates
are reported for the inside edges of the outer sensilla in the
array and the upper edge of the center sensillum in the array.
Shear rates were non-dimensionalized by multiplying each
shear rate by the advection-diffusion simulation time (20 s).
All shear rates reported are dimensionless.

Fluid velocity fields simulated with cIB were also used to
calculate the leakiness of the array, defined as the area that
fluid that moved through the array in simulation time divided
by the area of fluid that could have moved through the same
area if the array were absent. Velocities were evenly sampled
along a line through the sensilla array (see Fig. 2 orange line
labeled Gw) using VisIt. These velocities were multiplied by
the duration of the cIB simulation (t = 0.025) and the distance
between points. These values were summed to give the area
the fluid travelled through in the simulation. Similarly, the
area was then computed using velocity equal to the fixed
speed of the simulated flow (0.06 m s−1).

Concentration captured by each sensillum during each time
step in the advection-diffusionmodel were summed across the
sensilla and temporally to find a total concentration captured
value for each simulation. This value was divided by the max-
imum concentration, C∞, in each simulation to find the stan-
dardized concentration value presented as odor-capture
performance.

Computational Environment

Computational simulations were performed on the Bridges
Regular Memory cluster at Pittsburgh Supercomputing
Center through the Extreme Science and Engineering
Discovery Environment (XSEDE) and the Multi-
Environment Research Computer for Exploration and
Discovery (MERCED) high-performance computing cluster
at UC Merced. Bridges Regular Memory is a cluster of 752
nodes with 128GB sRAM each running 2.3–3.3 GHz Intel
Haswell CPUs with 14 cores each. Data analyses were per-
formed on a Mac Desktop running on 2.7 GHz 12-Core Intel
Xeon E5 processor with 64 GB of RAM.

Uncertainty Analysis

In this work, we consider the uncertainty in the following
three input parameters, which are represented using uniform
distributions: Angle (of sensilla array with respect to oncom-
ing flow, θ) ∼ W [0,180] degrees; Gap-width-to-sensillum-
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diameter ratio (between sensilla to the sensillum diameter,
Gw) ∼ W [0.5, 50]; and Re (Reynolds number of sensilla
array, Eq. 1) ∼ W [0.01, 5]. To efficiently quantify the uncer-
tainty in the quantities of our interest and analyze the sensitiv-
ity of the output quantities with respect to each of the uncertain
inputs, we introduce the generalized polynomial chaos (gPC)
expansion method to approximate the full simulation and a
variance-based sensitivity analysis measure – Sobol indices
(SI) – to identify the Bimportance^ of each input.

Generalized Polynomial Chaos

For each quantity of our interest (denoted as w), we construct
an approximation wp with respect to the vector of three uncer-
tain inputs (denoted as ξ) using gPC expansion up to order p
as follows (Wiener 1938).

w ξð Þ≈wp ξð Þ ¼ ∑
N−1

i¼0
wiLi ξð Þ; ð12Þ

where N ¼ nþpð Þ!
n!p! is the number of terms with n = 3 as the

dimension of inputs, and the parameters wis are called the
gPC coefficients to be determined. Based on the specific type
of distribution the input variables have, one can choose a most
proper polynomial basis function fromAskey scheme to reach
a fast convergence (Xiu and Karniadakis 2002). In the current
work, the functions Lis are chosen as Legendre polynomials
since we consider inputs ξ as uniform random variables. The
first few univariate Legendre polynomials are,

L0 ξð Þ ¼ 1;
L1 ξð Þ ¼ ξ;

L2 ξð Þ ¼ 1

2
3ξ2−1
� �

;

L3 ξð Þ ¼ 1

2
5ξ3−3ξ
� �

:

The multivariate Legendre polynomials are the product of
univariate polynomials.

To determine the gPC coefficients, we run M = 1233 full
simulations and extract a set of quantities of interest corre-

sponding to the inputs as fξ jð Þ;w jð ÞgM
j¼1, then solve the

Least Squares problems for the coefficient vector
w = [w0,w1, . . ., wN-1] as,

w ¼ argminw∼ ∥ ∑
N−1

i¼0
w∼iLi ξð Þ−w ξð Þ∥2; ð13Þ

wherew∼ ¼ ⟨w∼0;w
∼
1;…;w∼N−1⟩ is an arbitrary gPC coef-

ficient vector which converges to the desired coefficient vec-
tor w through the minimization.

Sensitivity Analysis

Global sensitivity analysis explores the impact on the model
output based on the uncertainty of the input variables over the
whole stochastic input space, and it can help to identify the
Bimportant^ uncertain variables. Here, we adopt a variance-
based measure to analyze the global sensitivity analysis: the
Sobol indices, which are calculated based on the ANOVA (anal-
ysis of variance) decomposition as follows (Sobol 1993, 2001),

w ξð Þ ¼ w0 þ ∑
i
wi ξið Þ þ ∑

i< j
wij ξi; ξ j

� �þ…

þ wi;…;n ξ1; ξ2;…; ξnð Þ:

where

∫w ξð Þdξ ¼ w0; ∫w ξð Þ∏k≠idξk ¼ w0 þ wi ξið Þ;
∫w ξð Þ∏k≠i; jdξk ¼ w0 þ wi ξið Þ þ wj ξ j

� �þ wi; j ξi; ξ j
� �

;

and so on.
Based on the ANOVA decomposition, the variance of the

sub-function wi1,i2,...,ir can be defined as,

Qi1;i2;…;ir ¼ ∫w2
i1;i2;…;ir dξi1;i2;:::;ir ;

and the total variance is defined as,

Q ¼ ∫w2 ξð Þdξ−w2
0 ¼ ∑

n

r¼1
∑
n

i1<…< ir
Fi1;i2;…;ir : ð14Þ

Following which, the global sensitivity indices are defined
as the ratio of the variance in sub-dimensional problem to the
total variance of the full-dimensional problem as,

Si1;i2;…;ir ¼
Qi1;i2;…;ir

Q
: ð15Þ

The larger the Sobol index is, the more important the set of
input parameters in that sub-dimensional space is. The most
frequently used indices are the first order indices and the total
indices,

Si ¼ Qi

Q
; i ¼ 1;…; n: ð16Þ

The first order indices measure the sensitivity of the quan-
tity of interest to each single variable ξi alone. It can help to
rank the Bimportance^ of the variables.

Numerically, one may calculate the Sobol indices using
Monte Carlo (MC) method. However, it could be computa-
tionally expensive since a large number of full computational
fluid dynamics simulations need to be implemented to reach a
reasonable convergence. Therefore, we calculate the Sobol
indices based on the gPC expansion in this work (Sudret
2008). Assume the gPC expansion is obtained as,
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w ξð Þ≈∑N−1
i¼0 wiLi ξð Þ: ð17Þ

The multivariate Legendre polynomial Li can be represent
by products of univariate polynomial with multiple index
α = (α1,. .., αn) as,

Li ξð Þ ¼ Lα ¼ ∏n
i¼1Lαi ξið Þ: ð18Þ

Let X i1;…;irf g denote a set of α multi-indices where only
αk ≠ 0 for k = i1, i2, . . ., ir. Then the gPC expansion can be
rewritten as,

w ξð Þ≈ ∑
n

s¼1
∑

α∈X i1 ;…;irf g
wαLα ξi1 ;…; ξis

� �
: ð19Þ

Based on that, the Sobol indices can be approximated
using,

Si1;i2;…;ir≈
1

Q
∑

α∈X i1 ;…;irf g
w2
α∫L

2
α ξð Þψ ξð Þdξ; ð20Þ

where ψ(ξ) is the probability density function of ξ and,

Q ¼ ∑
N−1

i¼1
w2
i ∫L

2
i ξð Þψ ξð Þdξ: ð21Þ

The set of Sobol indices is a variance-based measure to
analyze the sensitivity of the model output (quantity of inter-
est) to each single variable and the sets of variables. SIs of all
the quantities of interest sum to 1 and they show that the
variation of a specific variable or a specific set of variables
makes the majority contribution to the output variance. By
comparing the Sobol indices, one can rank the importance of
the uncertain variables and focus on the exploration of those
important variables in the physical process.

Public Data Availability

Raw data and the code to produce all data figures are publicly
available at figshare: https://doi.org/10.6084/m9.figshare.
6399740, https://doi.org/10.6084/m9.figshare.6399743,
https://doi.org/10.6084/m9.figshare.6399746, and https://doi.
org/10.6084/m9.figshare.6399749.

Results

Flow in the Array

Figure 2b–d represents a typical velocity vector field from the
last time step of the advection simulation in cIB (Re = 0.24,
Gw = 6.08, θ = 38). Flow processes around the antenna and
the sensilla array, flow being much slower for sensilla that are
either directly upstream or downstream of the antenna

Fig. 3 reports values for average speed (a – c) around
each sensillum and Fig. 4a and Table 3 report values of
Sobol indices. The orientation of each sensillum to the
antenna changes with the angle θ, and average speed
around each sensillum is sensitive to θ (center sensillum
SI = 0.966, top sensillum SI = 0.260, bottom sensillum
SI = 0.252). Average speed around the center sensillum,
the closest sensillum to the antenna, is especially sensitive
to changes in θ since the antenna often shadows the center
sensillum at very low and very high values of θ (Fig. 3a).
The average fluid speeds around the two outer sensilla
seem most sensitive to changes in Re (top sensillum
SI = 0.400, bottom sensillum SI = 0.420) and not Gw
(top sensillum SI = 4.35 × 10−4, bottom sensillum SI =
7.51 × 10−3). Averaged speed around these sensilla is sig-
nificantly influenced by the interaction between θ and Gw
(top sensillum SI = 0.332, bottom sensillum SI = 0.324),
supporting previous studies on flow through sensilla
arrays.

Shear rates (Fig. 3d – f) were absolutely much higher for
the outer sensilla in the array compared to the center sensil-
lum. Shear rates for all sensilla are highly sensitive to θ (center
sensillum SI = 0.498, top sensillum SI = 0.849, bottom
sensillum SI = 0.845; Fig. 4b) and moderately sensitive to
Re (center sensillum SI = 0.489, top sensillum SI = 0.118, bot-
tom sensillum SI = 0.116). The shear rates around the center
sensillum are more heavily influenced by Remostly likely due
to its close proximity to the antenna. Gw does not influence
shear rates on any of the sensilla (center sensillum SI = 4.76 ×
10−3, top sensillum SI = 4.87 × 10−3, bottom sensillum =
6.06 × 10−3), nor do any interactions between parameters (all
interaction SI’s < 0.03).

Values of leakiness ranged from 2.56 × 10−5 to 0.0317,
much lower than previous studies due to the influence of the
central antenna which diverted much of the flow around the
sensilla array at high and low values of θ. The sensitivity of
leakiness (Fig. 5c and d, purple bars) of the array was domi-
nated primarily by changes in Re (SI = 0.862) and to a much
lesser extent θ (SI = 0.0686). Notably, Gw and interactions
between Re and Gw did not have a major influence on leaki-
ness (SI = 0.0151 and SI = 6.24 × 10–4, respectively), contrary
to previous studies of leakiness in sensilla arrays (Cheer and
Koehl 1987a, b). This is likely due to the influence of the
central antenna which diverted flow around the array at many
of the values of Gw that would otherwise produce higher
values of leakiness.

Odor Capture in Water and Air

Fig. 5 reports values of standardized concentration of odor
captured in water (left column) and in air (right column) con-
ditions. Concentration captured in water ranged from 5.56 ×
10−5 to 1.20 × 10−4, while concentration captured in air ranged
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from 0.223 to 0.489. The difference in performance is reflec-
tive of absolute differences of capture between both air and
water.

The sensitivities of concentration captured to parameter
change differed dramatically between water and air conditions

(Fig. 5c and d, respectively). Sobol indices indicate that cap-
turing odor concentration in water is dominated primarily by
Re (SI = 0.880) and to a lesser extent θ (SI = 0.114), being
relatively insensitive to changes in Gw (SI = 5.20 × 10−4)
and interactions between parameters (SI’s < 0.01). The
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Fig. 3 Mean magnitudes of
dimensionless velocity (a – c) and
dimensionless shear rates (d – f)
against each parameter (θ, Gw,
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surrogate plot of concentration captured in water versus Re
and θ (Fig. 5e) shows that high Re lead to higher capture in
water, and middling values of θ enhance the high values of Re
(when the sensilla array is on the upper side of the antennule to
flow, not being shadowed by it).

In contrast, concentration captured in air is highly sensitive
toGw (SI = 0.833) and moderately sensitive to θ (SI = 0.160),
while being insensitive to Re (SI = 2.37 × 10−5) and interac-
tions between parameters (SI’s < 0.001). This is a reversal of
the trend of concentration capture in water which shows low
sensitivity toGw and high sensitivity to Re. The surrogate plot
of concentration captured in air versusGw and θ indicates that
the highest captures occur at high Gw values (when sensilla
are spaced far apart) and low θ values (when the sensilla array
is on the upstream side of the antenna).

Performance in the context of parameter change are similar
between leakiness and concentration captured in water and
dissimilar between leakiness and concentration captured in
air. Sobol indices reported for the three performance metrics
in Fig. 5c and d reflect this pattern: leakiness and concentra-
tion captured in water share similar values for sensitivity to Re
(0.862 and 0.85, respectively) and Gw (0.0151 and 6.60 ×
10−4, respectively), while leakiness and concentration cap-
tured in air show drastically different Sobol indices for the
two parameters. The norm of the difference between values
of leakiness and concentration captured in water is much

lower (0.313) than the same norm calculated between values
of leakiness and concentration captured in air (0.445), indicat-
ing that leakiness is a better predictor of concentration cap-
tured in water than concentration captured in air.

Discussion

Odor Capture Differs between Air and Water

In this study, we simulate odor capture by a series of theoret-
ical olfactory sensilla arrays in two biologically and environ-
mentally relevant situations reflective of water and air, respec-
tively: a narrow, brief band of high-odor concentration and a
broad, continuous band of lower-odor concentration. We use
this model to investigate the effects of three parameters
(Reynolds number Re, Gap-to-sensillum-diameter width Gw,
and the angle of the array to the direction of oncoming flow θ)
on odor-capture performance. Leakiness and concentration
captured values provide a way to assess the relative perfor-
mance of individual sensillum arrays in a typical encounter
event in water and in air. Sobol indices calculated via uncer-
tainty analysis provide a quantitative way to assess the relative
sensitivity of capture to the parameters varied.

The results of odor-capture performance indicate that there
are profound differences between odor capture in air versus

Table 3 Sobol indices (SI) calculated for each of the three parameters
(Re, Gw, θ) and their interactions for average speed, shear rate, leakiness,
concentration captured in water, and concentration captured in air. SI’s for

each sensillum are reported on each line of the columns for average speed
and shear rate (first line: center sensillum; second line: top sensillum;
third line: bottom sensillum)

Average Speed Shear rate Leakiness Conc. captured in water Conc. captured in air

Re 0.138 0.489 0.862 0.880 2.37 × 10−5

0.736 0.118

0.736 0.116

Gw 5.16 × 10−5 4.76 × 10−3 0.0151 5.20 × 10−4 0.833
4.19 × 10−3 4.87 × 10−3

4.33 × 10−3 6.06 × 10−3

θ 0.851 0.498 0.0686 0.114 0.160
0.110 0.849

0.110 0.110

Re & Gw 1.66 × 10−5 2.71 × 10−3 6.24 × 10−4 6.14 × 10−5 1.68 × 10−6

7.87 × 10−5 6.69 × 10−5

7.83 × 10−5 9.70 × 10−5

Re & θ 8.82 × 10−3 3.52 × 10−3 0.0214 4.34 × 10−3 3.79 × 10−6

7.46 × 10−4 0.0143

7.51 × 10−4 0.0112

Gw & θ 4.41 × 10−4 4.59 × 10−3 0.0317 2.75 × 10−4 7.05 × 10−3

0.149 0.0134

0.149 0.0223

All parameters 2.17 × 10−9 7.84 × 10−8 5.20 × 10−4 3.68 × 10−6 3.34 × 10−11

7.89 × 10−5 1.97 × 10−5

7.88 × 10−4 1.61 × 10−4
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water.Many timesmore odorant is captured in air (Fig. 5a – b, e
– f), likely the result of the longer exposure times to a larger
filament which is many times the diameter of the olfactory
sensillum and the higher diffusivity of odorants in air compared
to water (Willis and Arbas 1991). The coefficient of diffusion
used for these simulations were 10,000 times higher in air than
in water, resulting in low Péclet numbers (Pe < 1) and facilitat-
ing greater capture in air. This result held even though the odor
filament in air was of lower concentration than the high-
concentration filament of water, which is broadly reflective of
odor filaments in their respective fluid environments.

Furthermore, the sensitivity analyses on odor capture re-
vealed that the parameters of the array controlling perfor-
mance are drastically different between air and water. The

quantitative sensitivity analysis indicates that gap width be-
tween sensillaGw has no meaningful effect on odor capture in
water (Fig. 5c), a result seemingly contrary to previous studies
(Cheer and Koehl 1987a, b; Schuech et al. 2012; Stacey et al.
2002). The presence of the antenna greatly reduces leakiness
of the array compared to previous studies, consistent with
other studies investigating leakiness through a sensillum array
close to solid boundaries (Loudon et al. 1994). Re has an
important effect on odor capture in water (Fig. 5d) as low
diffusion rates of odorant molecules leads to the boundary
layer being more of a barrier for arrays in water rather than
air. Boundary layers share inverse relationship with Re and
both leakiness and odor capture in water are highly sensitive
to changes in Re.
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Fig. 5 Concentration captured
versus select parameters and
Sobol indices. a: Concentration
captured in water versus angle θ
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reported for leakiness (purple)
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Concentration captured in air
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Capture in air is tied more to sensillum arrangement than
the size or movement of the array. In contrast to both odor
capture in water and leakiness, Re does not influence odor-
capture performance in air (Fig. 5d). Instead, the arrangement
of sensilla, i.e. the gaps between sensilla Gw and to a lesser
extent θ, seem to influence odor capture in air. This is likely a
reflection of the outsized influence of diffusivity to capture at
low Pe, and where spreading sensory sensilla further apart
increases the area swept through and avoids the slow-
moving fluid around the antenna.

Leakiness and other measures of fluid flow are more rele-
vant predictor of odor capture performance in water than in air.
Many studies have assumed leakiness as a proxy for odor-
capture performance in aquatic crustaceans (Humphrey and
Mellon 2007; Mead et al. 1999; Mead and Koehl 2000;
Nelson et al. 2013; Reidenbach et al. 2008; Waldrop et al.
2015b,a), and the results of this study generally support this
assumption in water where Pe are high (on the order of 1000).
However, the dramatic differences in capture in air do not
support this assumption; diffusion rates D in air are high
enough to dominate capture, having Pe below one. Studies
that have investigated both array leakiness and odor-capture
performance have found a similar mismatch between the two
(Waldrop and Koehl 2016; Waldrop et al. 2016). Diffusive
transport must be taken into account when investigating cap-
ture by sensillum arrays in air.

Predictions of Morphological Diversity

Animals are under different sets of constraints capturing odors
in water versus air. Fluids possess different physical proper-
ties, diffusion rates vary dramatically between fluids, and the
shape, size, and frequency of the odor filaments in the envi-
ronment differ as a result of fluid habitat. Thus, it is reasonable
to expect differences in common combinations of morpholog-
ical parameters for extant groups of animals in aquatic versus
terrestrial habitats.

Most biological systems are extremely complex, and odor
capture is no exception. The complexity of parameter space
leads to many parameter combinations that will result in the
same functional performance such as many-to-one mapping,
mechanical equivalence, or functional redundancy (Anderson
and Patek 2015; Muñoz et al. 2017; Wainwright et al. 2005),
in addition to other selective pressures on sensillum morphol-
ogy such as preventing water loss (Bliss and Mantel 1968;
Greenaway 2003). Since odor capture is a functionally redun-
dant performance metric, making specific predictions about
the optimal configuration of parameters involved in odor cap-
ture is less useful than making broader predictions about the
ways in which the parameters of this system could be
constrained, the rates at which diversification could be expect-
ed, and the resultingmorphological range of parameter values.
Here, we make some general predictions on the diversity of

parameter values in groups of aquatic and terrestrial animals
within the Pancrustacea based on the performance results of
our model and sensitivity analyses.

Performance in aquatic crustaceans should be more
constrained overall due to lower capture rates and the nature
of odor filaments in water. Our simple model shows that per-
formance in water is tied heavily to Reynolds number (Re),
but not factors associated with the arrangement of the sensilla.
Since odor-capture performance in water is highly sensitive to
Re but less so to Gw, it is likely that aquatic crustaceans will
have denser arrays that rely on animal-generated currents to
increase Re fluid penetration into the array.

Additionally, the range of Re over which aquatic crusta-
ceans operate should be constrained and show low diversity
or be the sites of potential rapid evolutionary change between
antennule configurations which allow for high odor-capture
performance. This prediction is widely supported by the dense
arrays of aesthetascs seen for many decapod crustaceans in-
cluding brachyuran and anomuran crabs and spiny lobsters, as
well as the relatively constrained kinematics these animals
exhibit during flicking (Goldman and Patek 2002; Koehl
2011). An evolutionary shift from the sparser arrays of sto-
matopods and crayfish likely occurred rapidly due to the con-
straints of a dense array and a small range of effective Re.

Conversely, performance in terrestrial arthropods should
not be directly tied to changes in flow (U in Re eq. 1) caused
by either animal-induced or environmental fluid currents, but
should show higher constraints in terms of the gaps between
olfactory sensilla. The simple model shows that performance
in air is likely unconstrained by Re, and instead may rely
heavily on gap-width-to-sensillum-diameter ratio (Gw), spac-
ing olfactory sensilla far apart. Terrestrial arthropods, including
insects, should have arrays that are relatively sparse compared
to aquatic crustaceans and wider morphological diversity due
to fewer physical constraints on kinematics and morphology.
Anecdotally, this seems to be true given studies on insects
which exhibit a wide diversity of array and olfactory sensilla
morphologies (Hallberg and Hansson 1999). Additionally, this
prediction also supports the shift of the Ocypodidae from using
antennules with dense aesthetasc arrays to sparse
chemosensory hairs on their legs (Wellins et al. 1989).

In the case of animals that require specialized sensilla that
pick up very rare or dilute signals (such as sex pheromones),
insects may need to maintain denser arrays to increase the
available capture surface area available for detection. More
hairs in a similarly sized space would result in smaller gap
widths between sensilla and increased the overall surface area
of the sensor. When arrays are very dense and sensilla close
together, fluid is unable to penetrate the array at low Re, ef-
fectively shutting out the extra sensory area to odor-containing
fluid. Animals would be required to induce flow through flap-
ping, waving, or flying in order to force fluid into the array, as
opposed to letting unreliable environmental currents create
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flow at sufficient speeds. In these situations, low leakiness and
the local Pe would be dominated by advective transport and
odor capture would be more sensitive to manipulation of Re of
the array. This idea is supported anecdotally by observations
of terrestrial hermit crabs that have dense arrays with very
small gaps that lay close to the antennule and flick their an-
tennules (Waldrop and Koehl 2016; Waldrop et al. 2016) and
silkworm moths that have extremely dense arrays and require
wing-flapping to generate currents within the array to aid in
odorant capture (Loudon et al. 2000). In these cases, increased
flow within the dense arrays may make available more of the
sensory surface area than no animal-generated flow (Waldrop
et al. 2016).

Future Directions

Uncertainty analysis on computational models provides a
quantitative way to analyze the relative importance of mor-
phological and kinematic parameters on functional perfor-
mance. It provides an important bridge between computation-
al modeling and studies of morphological diversity in animal
populations, making it possible to predict patterns of morpho-
logical and kinematic diversity based on the sensitivity of each
parameter on performance.

However, these predictions are only as good as the model
itself at reflecting the most important parameters of each func-
tional system. Our model accounts for only three of many
parameters that may be influential to odor capture in two di-
mensions due to computational constraints. The model ex-
cludes many parameters that could have a major effect on
performance and thereby change the predictions made by sen-
sitivity analyses. For example, parameters such as the distance
of the sensilla array away from the antenna, the diffusion
coefficients of molecules, or the shape of the odorant signal
could all affect predictions of diversity and were not included
in this study. We hope to incorporate additional parameters in
subsequent studies.

As a result, these hypotheses need to be tested against mor-
phological and kinematic measurements of several groups of
aquatic and terrestrial arthropods representing independent
lineages of terrestrialization. Phylogenetically corrected mea-
surements of performance can be used to test predictions
about the expected rates of parameter evolution and the over-
all diversity of parameter values in groups (Muñoz et al.
2017). Additionally, measurements of these parameters on
groups of aquatic and terrestrial crustaceans can be measured
to see if parameters are constrained or diverse compared to
predictions made by the sensitivity analyses.

While a very simple model with many limitations, morpho-
logical measurements from extant animals can provide impor-
tant feedback for improving the model and better understand-
ing odor capture. Comparison to a systematic range of extant
odor-capture antennae will provide important feedback to the

model and point towards parameters that should be included
to refine the predictions made by sensitivity analyses through
other tools in uncertainty quantification.
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